1
|
Paparella A, Kongala PR, Serio A, Rossi C, Shaltiel-Harpaza L, Husaini AM, Ibdah M. Challenges and Opportunities in the Sustainable Improvement of Carrot Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:2092. [PMID: 39124210 PMCID: PMC11314595 DOI: 10.3390/plants13152092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
From an agricultural perspective, carrots are a significant tap root vegetable crop in the Apiaceae family because of their nutritional value, health advantages, and economic importance. The edible part of a carrot, known as the storage root, contains various beneficial compounds, such as carotenoids, anthocyanins, dietary fiber, vitamins, and other nutrients. It has a crucial role in human nutrition as a significant vegetable and raw material in the nutraceutical, food, and pharmaceutical industries. The cultivation of carrot fields is susceptible to a wide range of biotic and abiotic hazards, which can significantly damage the plants' health and decrease yield and quality. Scientific research mostly focuses on important biotic stressors, including pests, such as nematodes and carrot flies, as well as diseases, such as cavity spots, crown or cottony rot, black rot, and leaf blight, caused by bacteria, fungi, and oomycetes. The emerging challenges in the field include gaining a comprehensive understanding of the interaction between hosts and pathogens in the carrot-pathogen system, identifying the elements that contribute to disease development, expanding knowledge of systemic treatments, exploring host resistance mechanisms, developing integrated control programs, and enhancing resistance through breeding approaches. In fact, the primary carrot-growing regions in tropical and subtropical climates are experiencing abiotic pressures, such as drought, salinity, and heat stress, which limit carrot production. This review provides an extensive, up-to-date overview of the literature on biotic and abiotic factors for enhanced and sustainable carrot production, considering the use of different technologies for the shelf-life extension of carrots. Therefore, it addresses the current issues in the carrot production chain, opening new perspectives for the exploration of carrots both as a food commodity and as a source of natural compounds.
Collapse
Affiliation(s)
- Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.P.); (A.S.); (C.R.)
| | - Prasada Rao Kongala
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.P.); (A.S.); (C.R.)
| | - Chiara Rossi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.P.); (A.S.); (C.R.)
| | - Liora Shaltiel-Harpaza
- Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel;
- Environmental Sciences Department, Faculty of Sciences and Technology, Tel Hai College, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Amjad M. Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar 19005, Jammu and Kashmir, India;
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel
| |
Collapse
|
2
|
Pramanik B, Sar P, Bharti R, Gupta RK, Purkayastha S, Sinha S, Chattaraj S, Mitra D. Multifactorial role of nanoparticles in alleviating environmental stresses for sustainable crop production and protection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107831. [PMID: 37418817 DOI: 10.1016/j.plaphy.2023.107831] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
In the era of dire environmental fluctuations, plants undergo several stressors during their life span, which severely impact their development and overall growth in negative aspects. Abiotic stress factors, especially moisture stress i.e shortage (drought) or excess (flooding), salinity, temperature divergence (i.e. heat and cold stress), heavy metal toxicity, etc. create osmotic and ionic imbalance inside the plant cells, which ultimately lead to devastating crop yield, sometimes crop failure. Apart from the array of abiotic stresses, various biotic stress caused by pathogens, insects, and nematodes also affect production. Therefore, to combat these major challenges in order to increase production, several novel strategies have been adapted, among which the use of nanoparticles (NPs) i.e. nanotechnology is becoming an emerging tool in various facets of the current agriculture system, nowadays. This present review will elaborately depict the deployment and mechanisms of different NPs to withstand these biotic and abiotic stresses, along with a brief overview and indication of the future research works to be oriented based on the steps provided for future research in advance NPs application through the sustainable way.
Collapse
Affiliation(s)
- Biswajit Pramanik
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, 731236, Sriniketan, West Bengal, India
| | - Puranjoy Sar
- Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, 731236, Sriniketan, West Bengal, India.
| | - Ruchi Bharti
- Department of Agronomy, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, 731236, Sriniketan, West Bengal, India
| | - Rahul Kumar Gupta
- Department of Agronomy, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, 731236, Sriniketan, West Bengal, India
| | - Shampa Purkayastha
- Department of Genetics and Plant Breeding and Seed Science and Technology, Centurion University of Technology and Management, Paralekhamundi, 761211, Odisha, India
| | - Somya Sinha
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248 002, Uttarakhand, India
| | - Sourav Chattaraj
- Department of Microbiology, Raiganj University, Raiganj, 733134, Uttar Dinajpur, West Bengal, India
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, 733134, Uttar Dinajpur, West Bengal, India.
| |
Collapse
|
3
|
Rajput VD, Minkina T, Feizi M, Kumari A, Khan M, Mandzhieva S, Sushkova S, El-Ramady H, Verma KK, Singh A, van Hullebusch ED, Singh RK, Jatav HS, Choudhary R. Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. BIOLOGY 2021; 10:791. [PMID: 34440021 PMCID: PMC8389584 DOI: 10.3390/biology10080791] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Silicon (Si) is considered a non-essential element similar to cadmium, arsenic, lead, etc., for plants, yet Si is beneficial to plant growth, so it is also referred to as a quasi-essential element (similar to aluminum, cobalt, sodium and selenium). An element is considered quasi-essential if it is not required by plants but its absence results in significant negative consequences or anomalies in plant growth, reproduction and development. Si is reported to reduce the negative impacts of different stresses in plants. The significant accumulation of Si on the plant tissue surface is primarily responsible for these positive influences in plants, such as increasing antioxidant activity while reducing soil pollutant absorption. Because of these advantageous properties, the application of Si-based nanoparticles (Si-NPs) in agricultural and food production has received a great deal of interest. Furthermore, conventional Si fertilizers are reported to have low bioavailability; therefore, the development and implementation of nano-Si fertilizers with high bioavailability could be crucial for viable agricultural production. Thus, in this context, the objectives of this review are to summarize the effects of both Si and Si-NPs on soil microbes, soil properties, plant growth and various plant pathogens and diseases. Si-NPs and Si are reported to change the microbial colonies and biomass, could influence rhizospheric microbes and biomass content and are able to improve soil fertility.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Morteza Feizi
- Department of Soil Science, University of Kurdistan, Sanandaj 66177-15175, Iran;
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Masudulla Khan
- School of Life and Basic Sciences, SIILAS, Jaipur National University, Jaipur 302017, India;
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | | | - Abhishek Singh
- Department of Agricultural Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India;
| | - Eric D. van Hullebusch
- CNRS, Institut de Physique du Globe de Paris, Université de Paris, F-75005 Paris, France;
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Hanuman Singh Jatav
- Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jaipur 303329, India;
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| |
Collapse
|
4
|
The Influence of Trichoderma harzianum Rifai T-22 and Other Biostimulants on Rhizosphere Beneficial Microorganisms of Carrot. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10111637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The principles of good agricultural and horticultural practice, which consider both giving environmental protection and high yielding of plants, require modern cultivation methods. Modern cultivation of horticultural plants uses, for example, cover crops, living mulches, plant growth-promoting microorganisms (PGPMs), plant growth regulators (PGRs) and other biostimulants protecting the soil against degradation and plants against phytopathogens and stress. The purpose of field and laboratory studies was to determine the effect of Trianum P (containing Trichoderma harzianum Rifai T-22 spores), Beta-Chikol (a.s.—chitosan), Timorex Gold 24 EC (based on tea tree oil) and fungicide Zaprawa Nasienna T 75 DS/WS (a.s.—tiuram 75%) on the health of carrot (Daucus carota L.) plants and the microorganism population in the rhizosphere of this plant. Moreover, the antagonistic effect of rhizosphere fungi on selected carrot fungal pathogens was determined. Laboratory mycological analysis allowed one to determine the qualitative and quantitative composition of fungi colonizing the underground parts of carrot plants. In addition, the total population of fungi and bacteria was determined (including Bacillus sp. and Pseudomonas sp.) based on the microbiological analysis of the rhizosphere soil. The application of the plant growth-promoting fungus (Trichoderma harzianum T-22), chitosan and tea tree oil positively influenced the growth, development and health status of carrot plants. T. harzianum T-22, chitosan and fungicide most effectively protected carrots against infection by soil-borne fungi from the genus Alternaria, Fusarium, Haematonectria, Sclerotinia and Rhizoctonia. The rhizosphere population of Bacillus sp. and Pseudomonas sp. in the treatments with Trianum P or Zaprawa Nasienna T 75 DS/WS was bigger than in the other experimental treatments. A reverse relationship was observed in the population of rhizosphere fungi. T. harzianum T-22, chitosan and tea tree oil promoted the growth of antagonistic fungi (Albifimbria sp., Clonostachys sp., Penicillium sp., Talaromyces sp. and Trichoderma sp.) in the carrot rhizosphere. Antagonistic activity of these fungi towards Alternaria dauci, Alternaria radicina, Sclerotiniasclerotiorum and Rhizoctonia solani was higher after the application of the preparations compared to control. Consequently, Trianum P, Beta-Chikol and Timorex Gold 24 EC can be recommended as plant biostimulants in ecological agricultural production, including Daucus carota cultivation.
Collapse
|