1
|
Granat L, Knorr DY, Ranson DC, Chakrabarty RP, Chandel NS, Bateman JM. A Drosophila model of mitochondrial disease phenotypic heterogeneity. Biol Open 2024; 13:bio060278. [PMID: 38304969 PMCID: PMC10924217 DOI: 10.1242/bio.060278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Mutations in genes that affect mitochondrial function cause primary mitochondrial diseases. Mitochondrial diseases are highly heterogeneous and even patients with the same mitochondrial disease can exhibit broad phenotypic heterogeneity, which is poorly understood. Mutations in subunits of mitochondrial respiratory complex I cause complex I deficiency, which can result in severe neurological symptoms and death in infancy. However, some complex I deficiency patients present with much milder symptoms. The most common nuclear gene mutated in complex I deficiency is the highly conserved core subunit NDUFS1. To model the phenotypic heterogeneity in complex I deficiency, we used RNAi lines targeting the Drosophila NDUFS1 homolog ND-75 with different efficiencies. Strong knockdown of ND-75 in Drosophila neurons resulted in severe behavioural phenotypes, reduced lifespan, altered mitochondrial morphology, reduced endoplasmic reticulum (ER)-mitochondria contacts and activation of the unfolded protein response (UPR). By contrast, weak ND-75 knockdown caused much milder behavioural phenotypes and changes in mitochondrial morphology. Moreover, weak ND-75 did not alter ER-mitochondria contacts or activate the UPR. Weak and strong ND-75 knockdown resulted in overlapping but distinct transcriptional responses in the brain, with weak knockdown specifically affecting proteosome activity and immune response genes. Metabolism was also differentially affected by weak and strong ND-75 knockdown including gamma-aminobutyric acid (GABA) levels, which may contribute to neuronal dysfunction in ND-75 knockdown flies. Several metabolic processes were only affected by strong ND-75 knockdown including the pentose phosphate pathway and the metabolite 2-hydroxyglutarate (2-HG), suggesting 2-HG as a candidate biomarker of severe neurological mitochondrial disease. Thus, our Drosophila model provides the means to dissect the mechanisms underlying phenotypic heterogeneity in mitochondrial disease.
Collapse
Affiliation(s)
- Lucy Granat
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Debbra Y. Knorr
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Daniel C. Ranson
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Ram Prosad Chakrabarty
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S. Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph M. Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
2
|
Bateman JM. Mitochondrial DNA Transport in Drosophila Neurons. Methods Mol Biol 2022; 2431:409-416. [PMID: 35412289 DOI: 10.1007/978-1-0716-1990-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondria are essential organelles that generate energy and play vital roles in cellular metabolism. The small circular mitochondrial genome encodes key components of the mitochondrial respiratory apparatus. Depletion of, or mutations in mitochondrial DNA (mtDNA) cause mitochondrial dysfunction and disease. mtDNA is packaged into nucleoids, which are transported throughout the cell within mitochondria. Efficient transport of nucleoids is essential in neurons, where mitochondrial function is required locally at synapses. Here I describe methods for visualization of nucleoids in Drosophila neurons using a GFP fusion of the mitochondrial transcription factor TFAM. TFAM-GFP, together with mCherry-labeled mitochondria, was used to visualize nucleoids in fixed larval segmental nerves. I also describe how these tools can be used for live imaging of nucleoid dynamics. Using Drosophila as a model system, these methods will enable further characterization and analysis of nucleoid dynamics in neurons.
Collapse
Affiliation(s)
- Joseph M Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.
| |
Collapse
|
3
|
Leal NS, Martins LM. Mind the Gap: Mitochondria and the Endoplasmic Reticulum in Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9020227. [PMID: 33672391 PMCID: PMC7926795 DOI: 10.3390/biomedicines9020227] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
The way organelles are viewed by cell biologists is quickly changing. For many years, these cellular entities were thought to be unique and singular structures that performed specific roles. However, in recent decades, researchers have discovered that organelles are dynamic and form physical contacts. In addition, organelle interactions modulate several vital biological functions, and the dysregulation of these contacts is involved in cell dysfunction and different pathologies, including neurodegenerative diseases. Mitochondria–ER contact sites (MERCS) are among the most extensively studied and understood juxtapositioned interorganelle structures. In this review, we summarise the major biological and ultrastructural dysfunctions of MERCS in neurodegeneration, with a particular focus on Alzheimer’s disease as well as Parkinson’s disease, amyotrophic lateral sclerosis and frontotemporal dementia. We also propose an updated version of the MERCS hypothesis in Alzheimer’s disease based on new findings. Finally, we discuss the possibility of MERCS being used as possible drug targets to halt cell death and neurodegeneration.
Collapse
|
4
|
English J, Son JM, Cardamone MD, Lee C, Perissi V. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res 2020; 161:105161. [PMID: 32846213 PMCID: PMC7755734 DOI: 10.1016/j.phrs.2020.105161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02115, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Valentina Perissi
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Phenolic Acids-Rich Fractions from Agaricus bitorguis (Quél.) Sacc. Chaidam ZJU-CDMA-12 Mycelia Modulate Hypoxic Stress on Hypoxia-Damaged PC12 Cells. Molecules 2020; 25:molecules25204845. [PMID: 33096616 PMCID: PMC7587959 DOI: 10.3390/molecules25204845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 01/06/2023] Open
Abstract
Hypoxia is a common pathological process in various clinical diseases. However, there is still a lack of effective anti-hypoxia active substances. Agaricus bitorguis (Quél.) Sacc Chaidam (ABSC) is a rare wild edible macrofungus that grows underground at high altitudes. Herein, intracellular phenolic acids-rich fractions (IPA) were extracted from ABSC ZJU-CDMA-12, and the structural characterization and anti-hypoxia activity of IPA on PC12 cells were elucidated as well. The results of HPLC-Q-TOF-MS illustrated that five kinds of IPA were isolated from ABSC, including (−)-epicatechin gallate, arabelline, yunnaneic acid D, 2′-O-p-hydroxybenzoyl-6′-O-trans-caffeoylgardoside,4′-O-methylgallocatechin-(4->8)-4′-O-methylepigallocatechin. IPA extracted from ABSC proved to show anti-hypoxia activity on hypoxia-damaged PC12 cells. Hypoxia enhanced reactive oxygen species (ROS) generation and reduced the mitochondrial membrane potential (ΔΨm) in PC12 cells, resulting in the inhibition of survival and induction of apoptosis in PC12 cells. Measurements of 100 μg/mL and 250 μg/mL IPA could significantly reduce hypoxia-induced damage in PC12 cells by decreasing overproduced intracellular ROS, improving ΔΨm, and reducing cell apoptosis rate. Our findings indicated that the IPA from ABSC potentially could be used as novel bioactive components applied to anti-hypoxia functional foods or medicines.
Collapse
|
6
|
Granat L, Hunt RJ, Bateman JM. Mitochondrial retrograde signalling in neurological disease. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190415. [PMID: 32362256 DOI: 10.1098/rstb.2019.0415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuronal mitochondrial dysfunction causes primary mitochondrial diseases and likely contributes to neurodegenerative diseases including Parkinson's and Alzheimer's disease. Mitochondrial dysfunction has also been documented in neurodevelopmental disorders such as tuberous sclerosis complex and autism spectrum disorder. Only symptomatic treatments exist for neurodevelopmental disorders, while neurodegenerative diseases are largely untreatable. Altered mitochondrial function activates mitochondrial retrograde signalling pathways, which enable signalling to the nucleus to reprogramme nuclear gene expression. In this review, we discuss the role of mitochondrial retrograde signalling in neurological diseases. We summarize how mitochondrial dysfunction contributes to neurodegenerative disease and neurodevelopmental disorders. Mitochondrial signalling mechanisms that have relevance to neurological disease are discussed. We then describe studies documenting retrograde signalling pathways in neurons and glia, and in animal models of neuronal mitochondrial dysfunction and neurological disease. Finally, we suggest how specific retrograde signalling pathways can be targeted to develop novel treatments for neurological diseases. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Lucy Granat
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Rachel J Hunt
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Joseph M Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
7
|
Weidling I, Swerdlow RH. Mitochondrial Dysfunction and Stress Responses in Alzheimer's Disease. BIOLOGY 2019; 8:biology8020039. [PMID: 31083585 PMCID: PMC6627276 DOI: 10.3390/biology8020039] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) patients display widespread mitochondrial defects. Brain hypometabolism occurs alongside mitochondrial defects, and correlates well with cognitive decline. Numerous theories attempt to explain AD mitochondrial dysfunction. Groups propose AD mitochondrial defects stem from: (1) mitochondrial-nuclear DNA interactions/variations; (2) amyloid and neurofibrillary tangle interactions with mitochondria, and (3) mitochondrial quality control defects and oxidative damage. Cells respond to mitochondrial dysfunction through numerous retrograde responses including the Integrated Stress Response (ISR) involving eukaryotic initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). AD brains activate the ISR and we hypothesize mitochondrial defects may contribute to ISR activation. Here we review current recognized contributions of the mitochondria to AD, with an emphasis on their potential contribution to brain stress responses.
Collapse
Affiliation(s)
- Ian Weidling
- University of Kansas Alzheimer's Disease Center, Fairway, KS 66205, USA.
- Department of Integrated and Molecular Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, Fairway, KS 66205, USA.
- Department of Integrated and Molecular Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
8
|
Affiliation(s)
- Joseph M Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, UK
| |
Collapse
|
9
|
Duncan OF, Granat L, Ranganathan R, Singh VK, Mazaud D, Fanto M, Chambers D, Ballard CG, Bateman JM. Ras-ERK-ETS inhibition alleviates neuronal mitochondrial dysfunction by reprogramming mitochondrial retrograde signaling. PLoS Genet 2018; 14:e1007567. [PMID: 30059502 PMCID: PMC6085068 DOI: 10.1371/journal.pgen.1007567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 08/09/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction activates the mitochondrial retrograde signaling pathway, resulting in large scale changes in gene expression. Mitochondrial retrograde signaling in neurons is poorly understood and whether retrograde signaling contributes to cellular dysfunction or is protective is unknown. We show that inhibition of Ras-ERK-ETS signaling partially reverses the retrograde transcriptional response to alleviate neuronal mitochondrial dysfunction. We have developed a novel genetic screen to identify genes that modify mitochondrial dysfunction in Drosophila. Knock-down of one of the genes identified in this screen, the Ras-ERK-ETS pathway transcription factor Aop, alleviates the damaging effects of mitochondrial dysfunction in the nervous system. Inhibition of Ras-ERK-ETS signaling also restores function in Drosophila models of human diseases associated with mitochondrial dysfunction. Importantly, Ras-ERK-ETS pathway inhibition partially reverses the mitochondrial retrograde transcriptional response. Therefore, mitochondrial retrograde signaling likely contributes to neuronal dysfunction through mis-regulation of gene expression. Loss of mitochondrial function activates the mitochondrial retrograde signaling pathway resulting in large scale changes in nuclear gene transcription. Very little is known about retrograde signaling in the nervous system and how the transcriptional changes affect neuronal function. Here we identify Ras-ERK-ETS signaling as a novel mitochondrial retrograde signaling pathway in the Drosophila nervous system. Inhibition of Ras-ERK-ETS signaling improves neuronal function in Drosophila models of mitochondrial disease. Targeting Ras-ERK-ETS signaling may therefore have therapeutic potential in mitochondrial disease patients. Using a transcriptomic approach, we find that inhibition of Ras-ERK-ETS signaling partially reverses the mitochondrial retrograde transcriptional response. Surprisingly therefore, the mitochondrial retrograde transcriptional response contributes to neuronal dysfunction.
Collapse
Affiliation(s)
- Olivia F. Duncan
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Lucy Granat
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Ramya Ranganathan
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Vandana K. Singh
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - David Mazaud
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Manolis Fanto
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Clive G. Ballard
- Medical School Building, St Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Joseph M. Bateman
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Jha NK, Jha SK, Sharma R, Kumar D, Ambasta RK, Kumar P. Hypoxia-Induced Signaling Activation in Neurodegenerative Diseases: Targets for New Therapeutic Strategies. J Alzheimers Dis 2018; 62:15-38. [DOI: 10.3233/jad-170589] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Renu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
11
|
Hunt RJ, Bateman JM. Mitochondrial retrograde signaling in the nervous system. FEBS Lett 2017; 592:663-678. [PMID: 29086414 DOI: 10.1002/1873-3468.12890] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023]
Abstract
Mitochondria generate the majority of cellular ATP and are essential for neuronal function. Loss of mitochondrial activity leads to primary mitochondrial diseases and may contribute to neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Mitochondria communicate with the cell through mitochondrial retrograde signaling pathways. These signaling pathways are triggered by mitochondrial dysfunction and allow the organelle to control nuclear gene transcription. Neuronal mitochondrial retrograde signaling pathways have been identified in disease model systems and targeted to restore neuronal function and prevent neurodegeneration. In this review, we describe yeast and mammalian cellular models that have paved the way in the investigation of mitochondrial retrograde mechanisms. We then discuss the evidence for retrograde signaling in neurons and our current knowledge of retrograde signaling mechanisms in neuronal model systems. We argue that targeting mitochondrial retrograde pathways has the potential to lead to novel treatments for neurological diseases.
Collapse
Affiliation(s)
- Rachel J Hunt
- Wolfson Centre for Age-Related Diseases, King's College London, UK
| | - Joseph M Bateman
- Wolfson Centre for Age-Related Diseases, King's College London, UK
| |
Collapse
|