1
|
Zhou W, Qiu H, Guo Y, Guo W. Molecular Insights into Distinct Detection Properties of α-Hemolysin, MspA, CsgG, and Aerolysin Nanopore Sensors. J Phys Chem B 2020; 124:1611-1618. [PMID: 32027510 DOI: 10.1021/acs.jpcb.9b10702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein nanopores have been widely used as single-molecule sensors for the detection and characterization of biological polymers such as DNA, RNA, and polypeptides. A variety of protein nanopores with various geometries have been exploited for this purpose, which usually exhibit distinct sensing capabilities, but the underlying molecular mechanism remains elusive. Here, we systematically characterize the molecular transport properties of four widely studied protein nanopores, α-hemolysin, MspA, CsgG, and aerolysin, by extensive molecular dynamics simulations. It is found that a sudden drop in electrostatic potentials occurs at the sole constriction in MspA and CsgG nanopores in contrast to the gradual potential change inside α-hemolysin and aerolysin pores, indicating the crucial role of pore geometry in ionic and molecular transport. We further demonstrate that these protein nanopores exhibit open-pore currents and ssDNA-induced current blockades both in the order MspA > α-hemolysin > CsgG > aerolysin, but an equivalent blockade percentage around 80%. In addition, the substitution of key amino acids at the pore constriction, especially by charged ones, provides an efficient way to modulate the pore electrostatic potential and ionic current. This work sheds new light on the search for high-performance nanopores, engineering of protein nanopores, and design of bioinspired solid-state nanopores.
Collapse
Affiliation(s)
- Wanqi Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yufeng Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
2
|
Abstract
In 1989, Normark and coworkers reported on fibrous surface structures called curli on strains of Escherichia coli that were suspected of causing bovine mastitis. Subsequent work by many groups has revealed an elegant and highly regulated curli biogenesis pathway also referred to as the type VIII secretion system. Curli biogenesis is governed by two divergently transcribed operons, csgBAC and csgDEFG. The csgBAC operon encodes the structural subunits of curli, CsgA and CsgB, along with a chaperone-like protein, CsgC. The csgDEFG operon encodes the accessory proteins required for efficient transcription, secretion, and assembly of the curli fiber. CsgA and CsgB are secreted as largely unstructured proteins and transition to β-rich structures that aggregate into regular fibers at the cell surface. Since both of these proteins have been shown to be amyloidogenic in nature, the correct spatiotemporal synthesis of the curli fiber is of paramount importance for proper functioning and viability. Gram-negative bacteria have evolved an elegant machinery for the safe handling, secretion, and extracellular assembly of these amyloidogenic proteins.
Collapse
|
3
|
Mojtabavi M, VahidMohammadi A, Liang W, Beidaghi M, Wanunu M. Single-Molecule Sensing Using Nanopores in Two-Dimensional Transition Metal Carbide (MXene) Membranes. ACS NANO 2019; 13:3042-3053. [PMID: 30844249 DOI: 10.1021/acsnano.8b08017] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Label-free nanopore technology for sequencing biopolymers such as DNA and RNA could potentially replace existing methods if improvements in cost, speed, and accuracy are achieved. Solid-state nanopores have been developed over the past two decades as physically and chemically versatile sensors that mimic biological channels, through which transport and sequencing of biomolecules have already been demonstrated. Of particular interest is the use of two-dimensional (2D) materials as nanopore substrates, since these can in theory provide the highest resolution readout (<1 nm of a biopolymer segment) and opportunities for electronic multiplexed readout through their interesting electronic properties. In this work, we report on nanopores comprising atomically thin flakes of 2D transition metal carbides called MXenes. We demonstrate a high-yield (60%), contamination-free, and alignment-free transfer method that involves their self-assembly at a liquid-liquid interface to large-scale (mm-sized) films composed of sheets, followed by nanopore fabrication using focused electron beams. Our work demonstrates the feasibility of MXenes, a class of hydrophilic 2D materials with over 20 compositions known to date, as nanopore membranes for DNA translocation and single-molecule sensing applications.
Collapse
Affiliation(s)
- Mehrnaz Mojtabavi
- Department of Bioengineering , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Armin VahidMohammadi
- Department of Materials Engineering , Auburn University , Auburn , Alabama 36849 , United States
| | - Wentao Liang
- Kostas Advanced Nano-Characterization Facility , Northeastern University , Burlington Campus, 141 South Bedford Street , Burlington , Massachusetts 01803 , United States
| | - Majid Beidaghi
- Department of Materials Engineering , Auburn University , Auburn , Alabama 36849 , United States
| | - Meni Wanunu
- Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
4
|
Rouse SL, Hawthorne WJ, Berry JL, Chorev DS, Ionescu SA, Lambert S, Stylianou F, Ewert W, Mackie U, Morgan RML, Otzen D, Herbst FA, Nielsen PH, Dueholm M, Bayley H, Robinson CV, Hare S, Matthews S. A new class of hybrid secretion system is employed in Pseudomonas amyloid biogenesis. Nat Commun 2017; 8:263. [PMID: 28811582 PMCID: PMC5557850 DOI: 10.1038/s41467-017-00361-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/23/2017] [Indexed: 11/25/2022] Open
Abstract
Gram-negative bacteria possess specialised biogenesis machineries that facilitate the export of amyloid subunits for construction of a biofilm matrix. The secretion of bacterial functional amyloid requires a bespoke outer-membrane protein channel through which unfolded amyloid substrates are translocated. Here, we combine X-ray crystallography, native mass spectrometry, single-channel electrical recording, molecular simulations and circular dichroism measurements to provide high-resolution structural insight into the functional amyloid transporter from Pseudomonas, FapF. FapF forms a trimer of gated β-barrel channels in which opening is regulated by a helical plug connected to an extended coil-coiled platform spanning the bacterial periplasm. Although FapF represents a unique type of secretion system, it shares mechanistic features with a diverse range of peptide translocation systems. Our findings highlight alternative strategies for handling and export of amyloid protein sequences. Gram-negative bacteria assemble biofilms from amyloid fibres, which translocate across the outer membrane as unfolded amyloid precursors through a secretion system. Here, the authors characterise the structural details of the amyloid transporter FapF in Pseudomonas.
Collapse
Affiliation(s)
- Sarah L Rouse
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - William J Hawthorne
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Jamie-Lee Berry
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Dror S Chorev
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Sandra A Ionescu
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Sebastian Lambert
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Fisentzos Stylianou
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Wiebke Ewert
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Uma Mackie
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK.,Walthamstow School for Girls, London, E17 9RZ, UK
| | - R Marc L Morgan
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Centre for Insoluble Protein Structures (inSPIN), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Florian-Alexander Herbst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Hagan Bayley
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Carol V Robinson
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Stephen Hare
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| |
Collapse
|
5
|
Konovalova A, Silhavy TJ. Outer membrane lipoprotein biogenesis: Lol is not the end. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0030. [PMID: 26370942 DOI: 10.1098/rstb.2015.0030] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
Van Gerven N, Klein RD, Hultgren SJ, Remaut H. Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol 2015; 23:693-706. [PMID: 26439293 DOI: 10.1016/j.tim.2015.07.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/06/2015] [Accepted: 07/22/2015] [Indexed: 01/20/2023]
Abstract
Curli are functional amyloid fibers assembled by many Gram-negative bacteria as part of an extracellular matrix that encapsulates the bacteria within a biofilm. A multicomponent secretion system ensures the safe transport of the aggregation-prone curli subunits across the periplasm and outer membrane, and coordinates subunit self-assembly into surface-attached fibers. To avoid the build-up of potentially toxic intracellular protein aggregates, the timing and location of the interactions of the different curli proteins are of paramount importance. Here we review the structural and molecular biology of curli biogenesis, with a focus on the recent breakthroughs in our understanding of subunit chaperoning and secretion. The mechanistic insight into the curli assembly pathway will provide tools for new biotechnological applications and inform the design of targeted inhibitors of amyloid polymerization and biofilm formation.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Roger D Klein
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St Louis, MO 63110-1010, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University in Saint Louis School of Medicine, St Louis, MO 63110-1010, USA
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|