1
|
Grydaki N, Colbeck I, Whitby C. Characterization of bioaerosols associated with commuter transport micro-environments using high throughput sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177539. [PMID: 39566635 DOI: 10.1016/j.scitotenv.2024.177539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Air quality inside commuter transport is an important public health issue. However, there is currently limited information on commuter exposure to the microbial fraction of airborne particles (i.e. bioaerosols) in different types of transport. Here we investigated the abundance and diversity of bioaerosols in public trains and private automobiles in the UK using molecular approaches. Overall, bacterial 16S rRNA gene abundances were significantly greater with the train (between 3.07×105 and 8.97×105 copies/m3) compared to the car (between 4.21×104 and 4.78×105 copies/m3) (p-value 0.019 < 0.05), with no significant differences found with train journeys throughout the day (p-value >0.05). In terms of microbial composition, significant differences were found between the two modes of transport, for both bacterial and fungal communities. Specifically, bacteria were dominated by Proteobacteria (trains: 37 %; cars: 30 %), Firmicutes (trains: 20 %; cars: 36 %), Actinobacteria (trains: 34 %; cars: 16 %) and Bacteroidetes (trains: 6.1 %; cars: 13 %). Within the fungi, Ascomycota were predominant in the train (80 %), while the car was dominated by Basidiomycota (70 %), which may be due to the time of year sampled. Additionally, a core bacterial and fungal microbiome, including human commensals and outdoor-originating micro-organisms, alongside several taxa of human health concern were found in the air of both modes of transport. This study provides an important insight into the aerosol microbiome in transport micro-environments, which is crucial for the evaluation of commuter exposure to potential health risks.
Collapse
Affiliation(s)
- N Grydaki
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, Essex, UK
| | - I Colbeck
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, Essex, UK
| | - C Whitby
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, Essex, UK.
| |
Collapse
|
2
|
Wang W, Dang G, Khan I, Ye X, Liu L, Zhong R, Chen L, Ma T, Zhang H. Bacterial Community Characteristics Shaped by Artificial Environmental PM2.5 Control in Intensive Broiler Houses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:723. [PMID: 36613044 PMCID: PMC9819255 DOI: 10.3390/ijerph20010723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Multilayer cage-houses for broiler rearing have been widely used in intensive Chinese farming in the last decade. This study investigated the characteristics and influencing factors of bacterial communities in the PM2.5 of broiler cage-houses. The PM2.5 samples and environmental variables were collected inside and outside of three parallel broiler houses at the early, middle, and late rearing stages; broiler manure was also gathered simultaneously. The bacterial 16S rRNA sequencing results indicated that indoor bacterial communities were different from the outdoor atmosphere and manure. Furthermore, the variations in airborne bacterial composition and structure were highly influenced by the environmental control variables at different growth stages. The db-RDA results showed that temperature and wind speed, which were artificially modified according to managing the needs for broiler growth, were the main factors affecting the diversity of dominant taxa. Indoor airborne and manurial samples shared numerous common genera, which contained high abundances of manure-origin bacteria. Additionally, the airborne bacterial community tended to stabilize in the middle and late stages, but the population of potentially pathogenic bacteria grew gradually. Overall, this study enhances the understanding of airborne bacteria variations and highlighted the potential role of environmental control measures in intensive farming.
Collapse
Affiliation(s)
- Wenxing Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guoqi Dang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Imran Khan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaobin Ye
- Bureau of Agriculture and Rural Affairs of Luanping County, Chengde 068250, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Teng Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Ginn O, Lowry S, Brown J. A systematic review of enteric pathogens and antibiotic resistance genes in outdoor urban aerosols. ENVIRONMENTAL RESEARCH 2022; 212:113097. [PMID: 35339466 DOI: 10.1016/j.envres.2022.113097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/10/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Aerosol transport of enteric microbiota including fecal pathogens and antimicrobial resistance genes (ARGs) has been documented in a range of settings but remains poorly understood outside indoor environments. We conducted a systematic review of the peer-reviewed literature to summarize evidence on specific enteric microbiota including enteric pathogens and ARGs that have been measured in aerosol samples in urban settings where the risks of outdoor exposure and antibiotic resistance (AR) spread may be highest. Following PRISMA guidelines, we conducted a key word search for articles published within the years 1990-2020 using relevant data sources. Two authors independently conducted the keyword searches of databases and conducted primary and secondary screenings before merging results. To be included, studies contained extractable data on enteric microbes and AR in outdoor aerosols regardless of source confirmation and reported on qualitative, quantitative, or viability data on enteric microbes or AR. Qualitative analyses and metric summaries revealed that enteric microbes and AR have been consistently reported in outdoor aerosols, generally via relative abundance measures, though gaps remain preventing full understanding of the role of the aeromicrobiological pathway in the fate and transport of enteric associated outdoor aerosols. We identified remaining gaps in the evidence base including a need for broad characterization of enteric pathogens in bioaerosols beyond bacterial genera, a need for greater sampling in locations of high enteric disease risk, and a need for quantitative estimation of microbial and nucleic acid densities that may be applied to fate and transport models and in quantitative microbial risk assessment.
Collapse
Affiliation(s)
- Olivia Ginn
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Sarah Lowry
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Joe Brown
- Deparment of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
4
|
Manibusan S, Mainelis G. Passive Bioaerosol Samplers: A Complementary Tool for Bioaerosol Research. A Review. JOURNAL OF AEROSOL SCIENCE 2022; 163:105992. [PMID: 36386279 PMCID: PMC9648171 DOI: 10.1016/j.jaerosci.2022.105992] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bioaerosols consist of airborne particles of biological origin. They play an important role in our environment and may cause negative health effects. The presence of biological aerosol is typically determined using active samplers. While passive bioaerosol samplers are used much less frequently in bioaerosol investigations, they offer certain advantages, such as simple design, low cost, and long sampling duration. This review discusses different types of passive bioaerosol samplers, including their collection mechanisms, advantages and disadvantages, applicability in different sampling environments, and available sample elution and analysis methods. Most passive samplers are based on gravitational settling and electrostatic capture mechanism or their combination. We discuss the agar settle plate, dustfall collector, Personal Aeroallergen Sampler (PAAS), and settling filters among the gravity-based samplers. The described electrostatics-based samplers include electrostatic dust cloths (EDC) and Rutgers Electrostatic Passive Sampler (REPS). In addition, the review also discusses passive opportunity samplers using preexisting airflow, such as filters in HVAC systems. Overall, passive bioaerosol sampling technologies are inexpensive, easy to operate, and can continuously sample for days and even weeks which is not easily accomplished by active sampling devices. Although passive sampling devices are usually treated as qualitative tools, they still provide information about bioaerosol presence and diversity, especially over longer time scales. Overall, this review suggests that the use of passive bioaerosol samplers alongside active collection devices can aid researchers in developing a more comprehensive understanding of biological presence and dynamics, especially over extended time scales and multiple locations.
Collapse
Affiliation(s)
- Sydonia Manibusan
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, New Jersey 08901-8551, USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, New Jersey 08901-8551, USA
| |
Collapse
|
5
|
Monteiro A, Cardoso J, Guerra N, Ribeiro E, Viegas C, Cabo Verde S, Sousa-Uva A. Exposure and Health Effects of Bacteria in Healthcare Units: An Overview. APPLIED SCIENCES 2022; 12:1958. [DOI: 10.3390/app12041958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Healthcare units consist of numerous people circulating daily, such as workers, patients, and companions, and these people are vehicles for the transmission of microorganisms, such as bacteria. Bacteria species may have different allergenic, pathogenic, infectious, or toxic properties that can affect humans. Hospital settings foment the proliferation of bacteria due to characteristics present in the indoor hospital environment. This review article aims to identify the potential health effects caused by bacterial contamination in the context of healthcare units, both in patients and in workers. A search was carried out for articles published in PubMed, Web of Science and Scopus, between 1 January 2000 and 31 October 2021, using the descriptor hospital exposure assessment bacteria. This bibliographic research found a total of 13 articles. Bacteria transmission occurs mainly due to the contact between healthcare workers and patients or through the handling of/contact with contaminated instruments or surfaces. The most common bacterial contaminants are Escherichia coli, Pseudomonas aeruginosa, Staphylococcus spp., Staphylococcus aureus and Micrococcus luteus, and the principal health effects of these contaminants are hospital-acquired infections and infections in immunocompromised people. A tight control of the disinfection methods is thus required, and its frequency must be increased to remove the microbial contamination of wards, surfaces and equipment. A better understanding of seasonal variations is important to prevent peaks of contamination.
Collapse
Affiliation(s)
- Ana Monteiro
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1600-560 Lisbon, Portugal
- Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, 1600-560 Lisbon, Portugal
| | - Jéssica Cardoso
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1600-560 Lisbon, Portugal
| | - Nuno Guerra
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1600-560 Lisbon, Portugal
| | - Edna Ribeiro
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1600-560 Lisbon, Portugal
| | - Carla Viegas
- H&TRC—Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1600-560 Lisbon, Portugal
- Centro de Investigação em Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, 1600-560 Lisbon, Portugal
| | - António Sousa-Uva
- Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Centro de Investigação em Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
| |
Collapse
|
6
|
Ginn O, Rocha-Melogno L, Bivins A, Lowry S, Cardelino M, Nichols D, Tripathi SN, Soria F, Andrade M, Bergin M, Deshusses MA, Brown J. Detection and Quantification of Enteric Pathogens in Aerosols Near Open Wastewater Canals in Cities with Poor Sanitation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14758-14771. [PMID: 34669386 DOI: 10.1021/acs.est.1c05060] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Urban sanitation infrastructure is inadequate in many low-income countries, leading to the presence of highly concentrated, uncontained fecal waste streams in densely populated areas. Combined with mechanisms of aerosolization, airborne transport of enteric microbes and their genetic material is possible in such settings but remains poorly characterized. We detected and quantified enteric pathogen-associated gene targets in aerosol samples near open wastewater canals (OWCs) or impacted (receiving sewage or wastewater) surface waters and control sites in La Paz, Bolivia; Kanpur, India; and Atlanta, USA, via multiplex reverse-transcription qPCR (37 targets) and ddPCR (13 targets). We detected a wide range of enteric targets, some not previously reported in extramural urban aerosols, with more frequent detections of all enteric targets at higher densities in La Paz and Kanpur near OWCs. We report density estimates ranging up to 4.7 × 102 gc per mair3 across all targets including heat-stable enterotoxigenic Escherichia coli, Campylobacter jejuni, enteroinvasive E. coli/Shigella spp., Salmonella spp., norovirus, and Cryptosporidium spp. Estimated 25, 76, and 0% of samples containing positive pathogen detects were accompanied by culturable E. coli in La Paz, Kanpur, and Atlanta, respectively, suggesting potential for viability of enteric microbes at the point of sampling. Airborne transmission of enteric pathogens merits further investigation in cities with poor sanitation.
Collapse
Affiliation(s)
- Olivia Ginn
- Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, Notre Dame, Indiana 46656, United States
| | - Lucas Rocha-Melogno
- Department of Civil and Environmental Engineering, and Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
- ICF, 2635 Meridian Parkway Suite 200, Durham, North Carolina 27713, United States
| | - Aaron Bivins
- Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, Notre Dame, Indiana 46656, United States
| | - Sarah Lowry
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Maria Cardelino
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dennis Nichols
- Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Sachchida Nand Tripathi
- Department of Civil Engineering & Centre for Environmental Science and Engineering, Indian Institute of Technology - Kalyanpur, Kanpur 208016, Uttar Pradesh, India
| | - Freddy Soria
- Centro de Investigación en Agua, Energía y Sostenibilidad, Universidad Católica Boliviana "San Pablo", La Paz 4807, Bolivia
| | - Marcos Andrade
- Laboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andres, La Paz 1995, Bolivia
- Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Mike Bergin
- Department of Civil and Environmental Engineering, and Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Marc A Deshusses
- Department of Civil and Environmental Engineering, and Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Joe Brown
- Deparment of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Xiang R, Zhang A, Lei C, Kong L, Ye X, Zhang X, Zeng J, Wang HN. Spatial variability and evaluation of airborne bacteria concentration in manure belt poultry houses2. Poult Sci 2019; 98:1202-1210. [PMID: 30500949 DOI: 10.3382/ps/pey511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/14/2018] [Indexed: 11/20/2022] Open
Abstract
Manure belt poultry houses were widely used for egg production. However, reliable spatial distribution of airborne bacteria data from long-term on-farm monitoring in manure belt houses are scarce. In this study, the airborne bacteria were collected by the Andersen air microorganism sampler in a 4 tiers and an 8 tiers layer house, respectively. Results revealed that the airborne bacteria concentration range from 565 ± 247 CFU/m3 to 12,118 ± 883 CFU/m3 inside the 4 tiers poultry farmhouse and 459 ± 247 to 12,966 ± 884 CFU/m3 inside 8 tiers poultry farmhouse, respectively. The average airborne bacterial concentrations in the 4 and 8 tiers manure belt houses were 4,527 ± 2,509 and 5,489 ± 2,579 CFU/m3, respectively. Significant spatial variations of airborne bacteria concentration were observed for both houses. Spatial distribution of airborne bacteria concentration along the long axis direction can be divided into 3 regions: the low concentration region (<6,000 CFU/m3), the transition region (6,000-10,000 CFU/m3), and the high concentration region (>10,000 CFU/m3), and airborne bacteria concentration was symmetrically distributed along the short axis direction inside both houses. We used 5 and 3 sampling locations to assess the average and maximum airborne bacterial concentration inside the manure belt houses, respectively. The average airborne bacteria concentration of 3 sampling locations was closest to the maximum concentration of both houses. It is more useful to use 3 sampling locations to monitor the change of the maximum airborne bacterial concentration inside the manure belt houses.
Collapse
Affiliation(s)
- Rong Xiang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Linghan Kong
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Xiaolan Ye
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Xiuzhong Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Jinxin Zeng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| | - Hong-Ning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China
| |
Collapse
|
8
|
Bolookat F, Hassanvand MS, Faridi S, Hadei M, Rahmatinia M, Alimohammadi M. Assessment of bioaerosol particle characteristics at different hospital wards and operating theaters: A case study in Tehran. MethodsX 2018; 5:1588-1596. [PMID: 30622921 PMCID: PMC6313819 DOI: 10.1016/j.mex.2018.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study was aimed to investigate the types and number of bacterial and fungal bioaerosols in indoor air of hospitals according to the type of wards and operating theaters. Bacterial and fungal samples were collected using the passive sampling method of 1/1/1 scheme during a six months' period in the Khatam-Al-Anbia hospital, Tehran, Iran. A simple linear regression was used to determine the relationship between bioaerosol concentrations and the number of active beds. Bacterial bioaerosol concentrations were mainly higher than fungi in all sampling sites. A significant association was found between airborne fungal concentrations and the numbers of beds (R2 = 0.76, p < 0.05), but not observed for bacteria (R2 = 0.02, p < 0.05). Our findings provided an exposure database of airborne bacterial and fungal bioaerosol in hospital wards and operating theaters in Tehran. •Due to the importance of the exposure risk to bioaerosols for patients and medical personnel, we focused on identification of the density and diversity of bacterial and fungal bioaerosols in different wards and operating theaters.•Our results showed that the numbers of the beds have a significant effect on airborne fungal concentrations.•The results of this study can be used to set indoor air quality standards for hospital wards and operating theatres.
Collapse
Affiliation(s)
- Fatemeh Bolookat
- Department of Environment Engineering, Faculty of Environment & Energy, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Faridi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rahmatinia
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Health Equity Research Center (HERC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Pagalilauan HAM, Paraoan CEM, Vital PG. Detection of pathogenic bioaerosols and occupational risk in a Philippine landfill site. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2018; 73:107-114. [PMID: 28406366 DOI: 10.1080/19338244.2017.1299087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/19/2017] [Indexed: 05/21/2023]
Abstract
Payatas landfill site is one of the major dumpsites in the Philippines. In this study, the landfill was evaluated regarding the presence and concentration of pathogenic bacterial aerosols through culture and molecular techniques. Bioaerosols are biological airborne particles that may or may not cause diseases. Active sampling was done using MAS-100 Air Sampler from both indoor and outdoor locations. To test the accuracy of the culture method, those that were presumptively identified as Staphylococcus aureus and Klebsiella pneumoniae were subjected to molecular analysis using 16s rRNA sequencing, and as a result, they were identified as different species. The exposure assessment done by interview showed matches among prevalent diseases. The results of this study can be used as a basis for creating standards and regulations for workers' and residents' safety and health in the landfill site.
Collapse
Affiliation(s)
- Hera Angela M Pagalilauan
- a Institute of Biology, College of Science , University of the Philippines , Diliman, Quezon City , Philippines
| | - Cielo Emar M Paraoan
- a Institute of Biology, College of Science , University of the Philippines , Diliman, Quezon City , Philippines
| | - Pierangeli G Vital
- a Institute of Biology, College of Science , University of the Philippines , Diliman, Quezon City , Philippines
- b Natural Sciences Research Institute , University of the Philippines , Diliman, Quezon City , Philippines
| |
Collapse
|