1
|
Nakashima Y, Iguchi H, Takakura K, Nakamura Y, Izumi K, Koba N, Haneda S, Tsukahara M. Adhesion Characteristics of Human Pancreatic Islets, Duct Epithelial Cells, and Acinar Cells to a Polymer Scaffold. Cell Transplant 2022; 31:9636897221120500. [PMID: 36062469 PMCID: PMC9449504 DOI: 10.1177/09636897221120500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We reported in 2018 that among several extracellular matrices, fibronectin, type I collagen, type IV collagen, laminin I, fibrinogen, and bovine serum albumin, fibronectin is particularly useful for adhesion of porcine pancreatic tissue. Subsequently, we developed a technology that enables the chemical coating of the constituent motifs of fibronectin onto cell culture dishes. In this experiment, we used islets (purity ≥ 90%), duct epithelial cells (purity ≥ 60%), and acinar cells (purity ≥ 99%) isolated from human pancreas according to the Edmonton protocol published in 2000 and achieved adhesion to the constituent motifs of fibronectin. A solution including cGMP Prodo Islet Media was used as the assay solution. In islets, adhesion was enhanced with the constitutive motifs of fibronectin compared with uncoated islets. In the functional evaluation of islets, insulin mRNA expression and insulin secretion were enhanced by the constitutive motif of fibronectin compared with non-coated islets. The stimulation index was comparable between non-coated islets and fibronectin motifs. In duct epithelial cells, adhesion was mildly promoted by the fibronectin component compared with non-coated component, while in acinar cells, adhesion was inhibited by the fibronectin component compared with the non-coated component. These data suggest that the constitutive motifs of fibronectin are useful for the adhesion of islets and duct epithelial cells.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Center for iPS Cell Research and Application Foundation, Facility for iPS Cell Therapy, Kyoto University, Kyoto, Japan
| | - Hiroki Iguchi
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Kenta Takakura
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Yuta Nakamura
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | | | | | - Satoshi Haneda
- R&D Center Corporate Advanced Technology Institute Life Science Development Center, Sekisui Chemical Co., Ltd., Osaka, Japan
| | - Masayoshi Tsukahara
- Center for iPS Cell Research and Application Foundation, Facility for iPS Cell Therapy, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Wang H, Li S, Dai Q, Gonzalez A, Tran ON, Sun H, DeFronzo RA, Dean DD, Yeh CK, Chen XD. Culture on a native bone marrow-derived extracellular matrix restores the pancreatic islet basement membrane, preserves islet function, and attenuates islet immunogenicity. FASEB J 2020; 34:8044-8056. [PMID: 32307751 PMCID: PMC8034411 DOI: 10.1096/fj.201902893r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 11/11/2022]
Abstract
Islet transplantation in man is limited by multiple factors including islet availability, islet cell damage caused by collagenase during isolation, maintenance of islet function between isolation and transplantation, and allograft rejection. In this study, we describe a new approach for preparing islets that enhances islet function in vitro and reduces immunogenicity. The approach involves culture on native decellularized 3D bone marrow-derived extracellular matrix (3D-ECM), which contains many of the matrix components present in pancreas, prior to islet transplantation. Compared to islets cultured on tissue culture plastic (TCP), islets cultured on 3D-ECM exhibited greater attachment, higher survival rate, increased insulin content, and enhanced glucose-stimulated insulin secretion. In addition, culture of islets on 3D-ECM promoted recovery of vascular endothelial cells within the islets and restored basement membrane-related proteins (eg, fibronectin and collagen type VI). More interestingly, culture on 3D-ECM also selectively decontaminated islets of “passenger” cells (co-isolated with the islets) and restored basement membrane-associated type VI collagen, which were associated with an attenuation in islet immunogenicity. These results demonstrate that this novel approach has promise for overcoming two major issues in human islet transplantation: (a) poor yield of islets from donated pancreas tissue and (b) the need for life-long immunosuppression.
Collapse
Affiliation(s)
- Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shengxian Li
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Qiuxia Dai
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aaron Gonzalez
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Haiyan Sun
- Department of Stomatology, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Ralph A DeFronzo
- Diabetes Division, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.,Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|