1
|
Abd-Rabou HS, Mansour HMM, Matloup OH, Sallam SMA, Elazab MA. Impact of mixing coriander oil with goat feed on the chemical, microbiological and sensory characterizations of bio rayeb milk. Sci Rep 2023; 13:11215. [PMID: 37433826 DOI: 10.1038/s41598-023-38047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
This research aimed to investigate the properties of bio rayeb milk that results from goats fed on feed supplemented with different concentrations of coriander oil. The study design included a control treatment (C) and two coriander oil concentrations, a low level of (0.95%) T1 and a high level of (1.9%) T2. A probiotic starter culture, Direct Vat Set (DVS) of lactobacillus delbrueckii ssp. bulgaricus and streptococcus salivarius ssp. thermophilus in the ratio (1:1) was used to prepare bio rayeb. All treatments were stored at 4 °C for 2 weeks and analyzed on day one and at the end of storage. Results showed that the coagulation time during bio rayeb manufacturing remained consistent at almost 6 h for all batches. However, using a high coriander oil level (1.90%) significantly decreased the apparent viscosity and the content of monounsaturated fatty acids. The DPPH inhibition and the content of monounsaturated fatty acids increased. The electrophoresis chromatogram exhibited a high degree of proteolysis in T2 compared to the control and T1. Microbiologically, yeast, molds, and coliforms were absent in all treatments. Feeding goats on provender supplemented with a low concentration of coriander oil may positively impact the resultant milk's technological and sensorial properties.
Collapse
Affiliation(s)
- Hagar S Abd-Rabou
- Department of Food Technology, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt.
| | - Hanem M M Mansour
- Department of Food Technology, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - O H Matloup
- Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
| | - S M A Sallam
- Department of Animal Production, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, Egypt
| | - M A Elazab
- Department of Livestock Research, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| |
Collapse
|
2
|
Farag MA, El Hawary EA, Elmassry MM. Rediscovering acidophilus milk, its quality characteristics, manufacturing methods, flavor chemistry and nutritional value. Crit Rev Food Sci Nutr 2019; 60:3024-3041. [DOI: 10.1080/10408398.2019.1675584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Enas A. El Hawary
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
3
|
Ranadheera CS, Evans CA, Baines SK, Balthazar CF, Cruz AG, Esmerino EA, Freitas MQ, Pimentel TC, Wittwer AE, Naumovski N, Graça JS, Sant'Ana AS, Ajlouni S, Vasiljevic T. Probiotics in Goat Milk Products: Delivery Capacity and Ability to Improve Sensory Attributes. Compr Rev Food Sci Food Saf 2019; 18:867-882. [PMID: 33337004 DOI: 10.1111/1541-4337.12447] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Abstract
Dairy foods, particularly those of bovine origin, are the predominant vehicles for delivery of probiotic bacteria. Caprine (goat) milk also possesses potential for successful delivery of probiotics, and despite its less appealing flavor in some products, the use of goat milk as a probiotic carrier has rapidly increased over the last decade. This review reports on the diversity, applicability, and potential of using probiotics to enhance the sensory properties of goat milk and goat milk-based products. A brief conceptual introduction to probiotic microorganisms is followed by an account of the unique physicochemical, nutritive, and beneficial aspects of goat milk, emphasizing its advantages as a probiotic carrier. The sensory properties of probiotic-enriched goat milk products are also discussed. The maintenance of probiotic viability and desirable physicochemical characteristics in goat milk products over shelf life is possible. However, the unpleasant sensory features of some goat milk products remain a major disadvantage that hinder its wider utilization. Nevertheless, certain measures such as fortification with selected probiotic strains, inclusion of fruit pulps and popular flavor compounds, and production of commonly consumed tailor-made goat milk-based products have potential to overcome this limitation. In particular, certain probiotic bacteria release volatile compounds as a result of their metabolism, which are known to play a major role in the aroma profile and sensory aspects of the final products.
Collapse
Affiliation(s)
- C S Ranadheera
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | - C A Evans
- School of Environmental and Life Sciences, Univ. of Newcastle, NSW, 2308, Australia
| | - S K Baines
- School of Health Sciences, Univ. of Newcastle, NSW, 2308, Australia
| | - Celso F Balthazar
- Dept. of Food Science and Technology, School of Veterinary, Federal Fluminense Univ., 24230-340, Niterói, RJ, Brazil
| | - Adriano G Cruz
- Dept. of Food, Federal Inst. of Rio de Janeiro, 20270-021, Rio de Janeiro, RJ, Brazil
| | - Erick A Esmerino
- Dept. of Food Science and Technology, School of Veterinary, Federal Fluminense Univ., 24230-340, Niterói, RJ, Brazil
| | - Mônica Q Freitas
- Dept. of Food Science and Technology, School of Veterinary, Federal Fluminense Univ., 24230-340, Niterói, RJ, Brazil
| | | | - A E Wittwer
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | - N Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, Univ. of Canberra, Canberra, ACT, 2601, Australia.,Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, Canberra, ACT, 2601, Australia
| | - Juliana S Graça
- Dept. of Food Science, Faculty of Food Engineering, Univ. of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Dept. of Food Science, Faculty of Food Engineering, Univ. of Campinas, Campinas, São Paulo, Brazil
| | - S Ajlouni
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The Univ. of Melbourne, Melbourne, VIC, 3010, Australia
| | - T Vasiljevic
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria Univ., Werribee, Victoria, 3030, Australia
| |
Collapse
|