1
|
Yao S, Lu H, Zhou T, Jiang Q, Jiang C, Hu W, Li M, Tan CP, Feng Y, Du Q, Shen G, Xiang X, Chen L. Sciadonic acid attenuates high-fat diet-induced bone metabolism disorders in mice. Food Funct 2024; 15:4490-4502. [PMID: 38566566 DOI: 10.1039/d3fo04527g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
High-fat diet (HFD) has been associated with certain negative bone-related outcomes, such as bone metabolism disruption and bone loss. Sciadonic acid (SC), one of the main nutritional and functional components of Torreya grandis seed oil, is a unique Δ5-unsaturated-polymethylene-interrupted fatty acid (Δ5-UPIFA) that has been claimed to counteract such disorders owing to some of its physiological effects. However, the role of SC in ameliorating bone metabolism disorders due to HFD remains unclear. In the present investigation, we observed that SC modulates the OPG/RANKL/RANK signaling pathway by modifying the lipid metabolic state and decreasing inflammation in mice. In turn, it could balance bone resorption and formation as well as calcium and phosphorus levels, enhance bone strength and bone mineral density (BMD), and improve its microstructure. In addition, SC could inhibit fat vacuoles in bone, reverse the phenomenon of reduced numbers and poor continuity of bone trabeculae, and promote orderly arrangement of collagen fibers and cartilage repair. This study provides some theoretical basis for SC as a dietary intervention agent to enhance bone nutrition.
Collapse
Affiliation(s)
- Shiwei Yao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
- Institute of Sericulture and Tea Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
- Zhejiang Key Laboratory of Green, Low-Carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Hongling Lu
- Institute of Sericulture and Tea Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Tianhuan Zhou
- Zhejiang Forest Resources Monitoring Center, Hangzhou, Zhejiang, 310012, China
| | - Qihong Jiang
- Institute of Sericulture and Tea Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Chenkai Jiang
- Institute of Sericulture and Tea Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Wenjun Hu
- Institute of Sericulture and Tea Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Mingqian Li
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, 43400 Serdang, Malaysia
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd., Hangzhou, Zhejiang 310021, China
| | - Yongcai Feng
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd., Hangzhou, Zhejiang 310021, China
| | - Qun Du
- Zhejiang Forest Resources Monitoring Center, Hangzhou, Zhejiang, 310012, China
| | - Guoxin Shen
- Institute of Sericulture and Tea Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
- Zhejiang Key Laboratory of Green, Low-Carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China
| | - Lin Chen
- Institute of Sericulture and Tea Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
2
|
Sanatombi K. Antioxidant potential and factors influencing the content of antioxidant compounds of pepper: A review with current knowledge. Compr Rev Food Sci Food Saf 2023; 22:3011-3052. [PMID: 37184378 DOI: 10.1111/1541-4337.13170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
The use of natural food items as antioxidants has gained increasing popularity and attention in recent times supported by scientific studies validating the antioxidant properties of natural food items. Peppers (Capsicum spp.) are also important sources of antioxidants and several studies published during the last few decades identified and quantified various groups of phytochemicals with antioxidant capacities as well as indicated the influence of several pre- and postharvest factors on the antioxidant capacity of pepper. Therefore, this review summarizes the research findings on the antioxidant activity of pepper published to date and discusses their potential health benefits as well as the factors influencing the antioxidant activity in pepper. The major antioxidant compounds in pepper include capsaicinoids, capsinoids, vitamins, carotenoids, phenols, and flavonoids, and these antioxidants potentially modulate oxidative stress related to aging and diseases by targeting reactive oxygen and nitrogen species, lipid peroxidation products, as well as genes for transcription factors that regulate antioxidant response elements genes. The review also provides a systematic understanding of the factors that maintain or improve the antioxidant capacity of peppers and the application of these strategies offers options to pepper growers and spices industries for maximizing the antioxidant activity of peppers and their health benefits to consumers. In addition, the efficacy of pepper antioxidants, safety aspects, and formulations of novel products with pepper antioxidants have also been covered with future perspectives on potential innovative uses of pepper antioxidants in the future.
Collapse
|
3
|
Chen L, Jiang Q, Jiang C, Lu H, Hu W, Yu S, Li M, Tan CP, Feng Y, Xiang X, Shen G. Sciadonic acid attenuates high-fat diet-induced obesity in mice with alterations in the gut microbiota. Food Funct 2023; 14:2870-2880. [PMID: 36883533 DOI: 10.1039/d2fo02524h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Obesity has been reported to be associated with dysbiosis of gut microbiota. Sciadonic acid (SC) is one of the main functional components of Torreya grandis "Merrillii" seed oil. However, the effect of SC on high-fat diet (HFD)-induced obesity has not been elucidated. In this study, we evaluated the effects of SC on lipid metabolism and the gut flora in mice fed with a high-fat diet. The results revealed that SC activates the PPARα/SREBP-1C/FAS signaling pathway and reduces the levels of total cholesterol (TC), triacylglycerols (TG), and low-density lipoprotein cholesterol (LDL-C), but increases the level of high-density lipoprotein cholesterol (HDL-C) and inhibits weight gain. Among them, high-dose SC was the most effective; the TC, TG and LDL-C levels were reduced by 20.03%, 28.40% and 22.07%, respectively; the HDL-C level was increased by 8.55%. In addition, SC significantly increased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels by 98.21% and 35.17%, respectively, decreased oxidative stress, and ameliorated the pathological damage to the liver caused by a high-fat diet. Furthermore, SC treatment altered the composition of the intestinal flora, promoting the relative abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, while simultaneously decreasing the relative abundance of potentially harmful bacteria such as Faecalibaculum, norank_f_Desulfovibrionaceae, and Romboutsia. Spearman's correlation analysis indicated that the gut microbiota was associated with SCFAs and biochemical indicators. In summary, our results suggested that SC can improve lipid metabolism disorders and regulate the gut microbial structure.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chenkai Jiang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Hongling Lu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Wenjun Hu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Shaofang Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Mingqian Li
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, 43400 Serdang, Malaysia
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd, Hangzhou, Zhejiang 310021, China
| | - Yongcai Feng
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd, Hangzhou, Zhejiang 310021, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guoxin Shen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
4
|
Palabıyık E, Sulumer AN, Uguz H, Avcı B, Askın S, Askın H, Demir Y. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart. J Mol Recognit 2023; 36:e3004. [PMID: 36537558 DOI: 10.1002/jmr.3004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Atherosclerosis and cognitive impairment are both influenced by hyperlipidemia. Due to their high margin of safety and low cost, natural chemicals have recently attracted particular attention in the context of the treatment of disease. Hence, the purpose of this study was to investigate the possible amendatory impact of ethanol extract walnut (Juglans regia) seed coat (E-WSC) on some metabolic enzymes (glutathione reductase (GR), paraoxonase-1 (PON1), aldose reductase (AR), sorbitol dehydrogenase (SDH), acetylcholinesterase (AChE), glutathione S-transferase (GST), and butyrylcholinesterase (BChE)) activity in the liver, kidney, and heart of rats with Triton WR-1339-induced hyperlipidemia. Rats were divided into five groups: control group, HL-Control group (Triton WR-1339 400 mg/kg, i.p administered group), E- WSC + 150 (150 mg/kg,o.d given group), E- WSC + 300 (E- WSC 300 mg/kg, o.d given group) and HL+ E-WSC + 300 (Group receiving E- WSC 300 mg/kg, o.d 30 min prior to administration of Triton WR-1339 400 mg/kg, i.p). In HL-Control, AR, SDH, and BChE enzyme activity was significantly increased in all tissues compared to the control, while the activity of other studied enzymes was significantly decreased. The effects of hyperlipidemia on balance were improved and alterations in the activity of the investigated metabolic enzymes were prevented by E-WSC. As a result, promising natural compounds that can be used as adjuvant therapy in the treatment of cognitive disorders and hyperlipidemia may be found in E-WSC powder.
Collapse
Affiliation(s)
- Esra Palabıyık
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Ayşe Nurseli Sulumer
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Handan Uguz
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Bahri Avcı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Seda Askın
- Health Services Vocational School, Ataturk University, Erzurum, Turkey
| | - Hakan Askın
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
5
|
Ganoderma lucidum protease hydrolyzate on lipid metabolism and gut microbiota in high-fat diet fed rats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Akinmoladun AC, Adegbamigbe AD, Okafor NR, Josiah SS, Olaleye MT. Toxicological and pharmacological assessment of a multiherbal phytopharmaceutical on Triton X-1339-induced hyperlipidemia and allied biochemical dysfunctions. J Food Biochem 2020; 45:e13238. [PMID: 32410299 DOI: 10.1111/jfbc.13238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
This study investigated the safety and therapeutic effect of a multiherbal tea (MHT) on Triton X-1339-induced hyperlipidemia and associated biochemical and tissue dysfunctions. An infusion of the MHT was assessed for phytoconstituents, proximate and mineral composition, and antioxidant activity. Wistar rats administered 200 mg/kg Triton X-1399 were post-treated with MHT for 14 days followed by biochemical estimations in serum, heart, liver, and kidney of animals. Hematological and histopathological evaluations of the blood, and liver, respectively, were also performed. Different phytochemicals were detected in MHT, toxic metals were absent and antioxidant activity was appreciable. Disturbances in glucose level and redox homeostasis, alterations in liver, kidney, and heart function markers, and imbalances in hematological parameters precipitated by triton toxicity were mitigated by posttreatment with MHT. Multiherbal tea also ameliorated triton-induced hepatic histoarchitectural abnormalities. These results suggest that MHT is apparently an effective antilipemic tea with minimal or no side effects. PRACTICAL APPLICATIONS: Hyperlipidemia is one of the core risk factors for arteriosclerosis and a major contributor to other adverse health conditions. The prevalence of hyperlipidemia has increased drastically in the last few decades. Plant and plant products have been extensively used in the management of dyslipidemia and many plant-based antilipemic products with poorly defined toxicity and pharmacological profiles abound in the market. The results of this study demonstrated the protective effects of a MHT against triton-induced hyperlipidemia, atherogenic tendency, and dysfunction of key organs in rats and lent credence to its therapeutic relevance in the management of hyperlipidemia and related diseases.
Collapse
Affiliation(s)
- Afolabi C Akinmoladun
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| | - Adaugo Damilola Adegbamigbe
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| | - Nkechi Ruth Okafor
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| | - Sunday Solomon Josiah
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| | - M Tolulope Olaleye
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
| |
Collapse
|