1
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Oboh G, Atoki AV, Ademiluyi AO, Ogunsuyi OB. African Jointfir ( Gnetum africanum) and Editan ( Lasianthera africana) leaf alkaloid extracts exert antioxidant and anticholinesterase activities in fruit fly ( Drosophila melanogaster). Food Sci Nutr 2023; 11:2708-2718. [PMID: 37324853 PMCID: PMC10261729 DOI: 10.1002/fsn3.3307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
African Jointfir (Gnetum africanum) and Editan (Lasianthera africana) leaves are two leafy green veggies with several nutritional and medicinal properties. Alzheimer's disease (AD) is a form of neurodegeneration that is believed to cause dementia in affected individuals. The quest for alternative treatments has necessitated the exploitation of plants' secondary metabolites. Plant alkaloids have recently demonstrated relevance in the management of a variety of neurodegenerative disorders; although there is limited information on the neuroprotective properties of alkaloids from various tropical green leafy vegetables with neuroprotective potentials. As a result, this study examined the cholinesterase inhibitory activity and antioxidant potential of alkaloid extracts from the leaves of African Jointfir (G. africanum) and Editan (L. africana). Standard solvent extraction techniques were used to prepare alkaloid extracts. After that, these extracts were characterized using high-performance liquid chromatography. In vitro acetylcholinesterase inhibition assay for the extracts was also carried out. Subsequently, the alkaloid extracts were included in the diets of these flies (2 and 10 μg/g) for 7 days. Thereafter, treated fly homogenates were assayed for cholinesterase, monoamine oxidase, and antioxidant enzymes (specifically, glutathione-S-transferase catalase, and superoxide dismutase) activities, in addition, thiobarbituric acid reactive substance, reactive oxygen species, and total thiol contents. The extracts showed considerable anticholinesterase, antioxidant, and antimonoamine oxidase capabilities, according to the study's findings. Also, HPLC characterization revealed that desulphosinigrin (597,000 ng/100 g) and atropine (44,200 ng/100 g) are the predominating phytochemicals in Editan and African Jointfir respectively. These extracts could serve as potential sources of nutraceuticals with neuroprotective properties which can be used in the treatment/management of Alzheimer's disease.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Department of Biochemistry Federal University of Technology Akure Nigeria
| | | | | | - Opeyemi B Ogunsuyi
- Department of Biochemistry Federal University of Technology Akure Nigeria
- Department of Biomedical Technology Federal University of Technology Akure Nigeria
| |
Collapse
|
3
|
Zhang W, Zheng X, Chen X, Jiang X, Wang H, Zhang G. Lead detoxification of edible fungi Auricularia auricula and Pleurotus ostreatus: the purification of the chelation substances and their effects on rats. Front Nutr 2023; 10:1162110. [PMID: 37153916 PMCID: PMC10157028 DOI: 10.3389/fnut.2023.1162110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2023] [Indexed: 05/10/2023] Open
Abstract
Lead is a global pollutant that causes widespread concern. When a lead enters the body, it is distributed throughout the body and accumulates in the brain, bone, and soft tissues such as the kidney, liver, and spleen. Chelators used for lead poisoning therapy all have side effects to some extent and other drawbacks including high cost. Exploration and utilization of natural antidotes become necessary. To date, few substances originating from edible fungi that are capable of adsorbing lead have been reported. In this study, we found that two commonly eaten mushrooms Auricularia auricula and Pleurotus ostreatus exhibited lead adsorption capacity. A. auricula active substance (AAAS) and P. ostreatus active substance (POAS) were purified by hot-water extraction, ethanol precipitation from its fruiting bodies followed by ion exchange chromatography, ultrafiltration, and gel filtration chromatography, respectively. AAAS was 3.6 kDa, while POAS was 4.9 kDa. They were both constituted of polysaccharides and peptides. The peptide sequences obtained by liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) proved that they were rich in amino acids with side chain groups such as hydroxyl, carboxyl, carbonyl, sulfhydryl, and amidogen. Two rat models were established, but only a chronic lead-induced poisoning model was employed to determine the detoxification of AAAS/POAS and their fruiting body powder. For rats receiving continuous lead treatment, either AAAS or POAS could reduce the lead levels in the blood. They also promoted the elimination of the burden of lead in the spleen and kidney. The fruiting bodies were also proved to have lead detoxification effects. This is the first study to identify new functions of A. auricula and P. ostreatus in reducing lead toxicity and to provide dietary strategies for the treatment of lead toxicity.
Collapse
Affiliation(s)
- Weiwei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaojie Zheng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangdong Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuezhen Jiang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- *Correspondence: Hexiang Wang
| | - Guoqing Zhang
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
- Guoqing Zhang
| |
Collapse
|
4
|
Agunloye OM, Oboh G. Blood glucose lowering and effect of oyster (
Pleurotus ostreatus
)‐ and shiitake (
Lentinus subnudus
)‐supplemented diet on key enzymes linked diabetes and hypertension in streptozotocin‐induced diabetic in rats. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | - Ganiyu Oboh
- Department of Biochemistry Federal University of Technology Akure Nigeria
| |
Collapse
|