1
|
Hudu AR, Addy F, Mahunu GK, Abubakari A, Opoku N. Zearalenone contamination in maize, its associated producing fungi, control strategies, and legislation in Sub-Saharan Africa. Food Sci Nutr 2024; 12:4489-4512. [PMID: 39055180 PMCID: PMC11266927 DOI: 10.1002/fsn3.4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 07/27/2024] Open
Abstract
The fungal genus Fusarium contains many important plant pathogens as well as endophytes of wild and crop plants. Globally, Fusarium toxins in food crops are considered one of the greatest food safety concerns. Their occurrence has become more pronounced in Africa in recent times. Among the major Fusarium mycotoxins with food and feed safety concerns, zearalenone is frequently detected in finished feeds and cereals in Africa. However, the impact of indigenous agricultural practices (pre- and postharvest factors) and food processing techniques on the prevalence rate of Fusarium species and zearalenone occurrence in food and feed have not been collated and documented systematically. This review studies and analyzes recent reports on zearalenone contamination in maize and other cereal products from Africa, including its fungi producers, agronomic and climate variables impacting their occurrences, preventive measures, removal/decontamination methods, and legislations regulating their limits. Reports from relevant studies demonstrated a high prevalence of F. verticillioides and F. graminearum as Africa's main producers of zearalenone. Elevated CO2 concentration and high precipitation may carry along an increased risk of zearalenone contamination in maize. African indigenous processing methods may contribute to reduced ZEA levels in agricultural products and foods. Most African countries do not know their zearalenone status in the food supply chain and they have limited regulations that control its occurrence.
Collapse
Affiliation(s)
- Abdul Rashid Hudu
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Francis Addy
- Department of Biotechnology and Molecular Biology, Faculty of BiosciencesUniversity for Development StudiesNyankpalaGhana
| | - Gustav Komla Mahunu
- Department of Food Science and Technology, Faculty of Agriculture, Food, and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Abdul‐Halim Abubakari
- Department of Horticulture, Faculty of Agriculture, Food, and Consumer SciencesUniversity for Development StudiesNyankpalaGhana
| | - Nelson Opoku
- Department of Biotechnology and Molecular Biology, Faculty of BiosciencesUniversity for Development StudiesNyankpalaGhana
| |
Collapse
|
2
|
Saleh I, Zeidan R, Abu-Dieyeh M. The characteristics, occurrence, and toxicological effects of alternariol: a mycotoxin. Arch Toxicol 2024; 98:1659-1683. [PMID: 38662238 PMCID: PMC11106155 DOI: 10.1007/s00204-024-03743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Alternaria species are mycotoxin-producing fungi known to infect fresh produce and to cause their spoilage. Humans get exposed to fungal secondary metabolites known as mycotoxin via the ingestion of contaminated food. Alternariol (AOH) (C14H10O5) is an isocoumarins produced by different species of Alternaria including Alternaria alternata. AOH is often found in grain, fruits and fruits-based food products with high levels in legumes, nuts, and tomatoes. AOH was first discovered in 1953, and it is nowadays linked to esophagus cancer and endocrine disruption due to its similarity to estrogen. Although considered as an emerging mycotoxin with no regulated levels in food, AOH occurs in highly consumed dietary products and has been detected in various masked forms, which adds to its occurrence. Therefore, this comprehensive review was developed to give an overview on recent literature in the field of AOH. The current study summarizes published data on occurrence levels of AOH in different food products in the last ten years and evaluates those levels in comparison to recommended levels by the regulating entities. Such surveillance facilitates the work of health risk assessors and highlights commodities that are most in need of AOH levels regulation. In addition, the effects of AOH on cells and animal models were summarized in two tables; data include the last two-year literature studies. The review addresses also the main characteristics of AOH and the possible human exposure routes, the populations at risk, and the effect of anthropogenic activities on the widespread of the mycotoxin. The commonly used detection and control methods described in the latest literature are also discussed to guide future researchers to focus on mitigating mycotoxins contamination in the food industry. This review aims mainly to serve as a guideline on AOH for mycotoxin regulation developers and health risk assessors.
Collapse
Affiliation(s)
- Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Randa Zeidan
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
3
|
Chen X, Abdallah MF, Landschoot S, Audenaert K, De Saeger S, Chen X, Rajkovic A. Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize. Toxins (Basel) 2023; 15:577. [PMID: 37756003 PMCID: PMC10534665 DOI: 10.3390/toxins15090577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Maize is frequently contaminated with multiple mycotoxins, especially those produced by Aspergillus flavus and Fusarium verticillioides. As mycotoxin contamination is a critical factor that destabilizes global food safety, the current review provides an updated overview of the (co-)occurrence of A. flavus and F. verticillioides and (co-)contamination of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in maize. Furthermore, it summarizes their interactions in maize. The gathered data predict the (co-)occurrence and virulence of A. flavus and F. verticillioides would increase worldwide, especially in European cold climate countries. Studies on the interaction of both fungi regarding their growth mainly showed antagonistic interactions in vitro or in planta conditions. However, the (co-)contamination of AFB1 and FB1 has risen worldwide in the last decade. Primarily, this co-contamination increased by 32% in Europe (2010-2020 vs. 1992-2009). This implies that fungi and mycotoxins would severely threaten European-grown maize.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Sofie Landschoot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Kris Audenaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (S.L.); (K.A.)
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng 2028, South Africa
| | - Xiangfeng Chen
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, China;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
| |
Collapse
|
4
|
Wenndt A, Mutua F, Grace D, Thomas LF, Lambertini E. Quantitative assessment of aflatoxin exposure and hepatocellular carcinoma (HCC) risk associated with consumption of select Nigerian staple foods. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1128540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Aflatoxin contamination of staple grains and legumes has been linked to hepatocellular carcinoma (HCC) and other adverse health outcomes, constituting a substantial public health concern globally. Low-resource food environments in sub-Saharan Africa are often under-regulated and are particularly vulnerable to adverse health and nutrition outcomes associated with aflatoxin exposure. This study identifies levels of HCC risk in the northern Nigerian adult population, leveraging a systematic review of available evidence on aflatoxin contamination in Nigerian maize, groundnut, rice, cowpea, and soybean. Estimated dietary intake (EDI) was computed using publicly available dietary consumption data and a probabilistic quantitative risk assessment was conducted to determine the relative risk of HCC associated with consumption of selected aflatoxin-contaminated commodities. In total, 41 eligible studies reporting aflatoxin contamination were used to model the distribution of aflatoxin concentrations in Nigerian commodities. EDIs for maize, groundnut, rice, and cowpea exceeded the provisional maximum tolerable daily intake (PMTDI) level of 1 kgbw-1 day-1, with maize yielding the highest mean EDI (36.7 kgbw-1 day-1). The quantitative risk assessment estimated that 1.77, 0.44, 0.43, 0.15, and 0.01 HCC cases per year/100,000 population were attributable to aflatoxin exposure through maize, groundnut, rice, cowpea, and soybean, respectively. Sensitivity analysis revealed that aflatoxin concentration, dietary consumption levels, consumption frequency, and other variables have differing relative contributions to HCC risk across commodities. These findings constitute a novel multi-study risk assessment approach in the Nigerian context and substantiate existing evidence suggesting that there is reason for public health concern regarding aflatoxin exposure in the Nigerian population.
Collapse
|
5
|
Imade F, Ankwasa EM, Geng H, Ullah S, Ahmad T, Wang G, Zhang C, Dada O, Xing F, Zheng Y, Liu Y. Updates on food and feed mycotoxin contamination and safety in Africa with special reference to Nigeria. Mycology 2021; 12:245-260. [PMID: 34900380 PMCID: PMC8654414 DOI: 10.1080/21501203.2021.1941371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mycotoxin contamination of food and feed is a major concern in sub-Sahara African countries, particularly Nigeria. It represents a significant limit to health of human, livestock as well as the international trade. Aflatoxins, fumonisins, ochratoxin, zearalenone, deoxynivalenol and beauvericin are the major mycotoxins recognised in the aetiology of food safety challenges that precipitated countless number of diseases. In Nigeria, aflatoxins and fumonisin found in nearly all crops are the most common mycotoxins of economic and health importance such as sorghum, maize and groundnuts. Thus, consumption of food contaminated with mycotoxins are inevitable, hence the need for adequate regulation is necessary in these frontier economies as done in many developed economies to ensure food safety for human and animals. In low and middle-income countries, especially Nigeria, there is lack of awareness and sufficient information on the risk associated with consequent of mycotoxin contamination on wellbeing of human, animals health and the economy. It is based on the foregoing that this paper summarized the status of mycotoxin present in Nigerian food and feeds relative to the global regulatory standards. This aimed at preventing consuming mycotoxin contaminated food stuff while confronting its associated challenges. Suggestions on some possible control strategies to mitigate vending mycotoxin food and feeds were made.
Collapse
Affiliation(s)
- Francis Imade
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China.,Botany Department, Faculty of Life Sciences, Ambrose Alli University, Ekpoma, Edo State, Edo State Nigeria
| | - Edgar Mugizi Ankwasa
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hairong Geng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Sana Ullah
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tanvir Ahmad
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Gang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chenxi Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Oyeyemi Dada
- Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yongquan Zheng
- State Key Laboratory for Biology Pests, Institute of Plant Protection, Chinense Academy of Agricultural Sciences, Beljing, China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China.,School of Food Science and Engineering, Foshan University/South China Food Safety Research Center, Guangdong, China
| |
Collapse
|
6
|
Radić B, Kos J, Janić Hajnal E, Malachová A, Krska R, Sulyok M. Fusarium metabolites in maize from regions of Northern Serbia in 2016-2017. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2021; 14:295-305. [PMID: 34369295 DOI: 10.1080/19393210.2021.1961877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The main objective of this study was to determine the presence of Fusarium metabolites in maize samples collected from different regions of Northern Serbia (Bačka, Banat and Srem) during a period of two years (2016-2017). A total of 458 maize samples were analysed by liquid chromatography-tandem mass spectrometry. A total of 40 metabolites were detected, where 94% of the samples contained at least 5 metabolites. Fumonisins (including B1, B2, B3 and B4), moniliformin and bikaverin were the most frequent (80-98%) Fusarium metabolites in both years. Furthermore, in samples from 2016, fumonisin A1 and A2, deoxynivalenol, deoxynivalenol-3-glucoside, zearalenone, culmorin, 15-hydroxyculmorin, fusapyron, fusaproliferin and aurofusarin were detected with frequencies of 58-80%. Levels of certain Fusarium metabolites in 2016 were higher on average due to increased humidity when compared to 2017, which was characterised by warm and dry conditions.
Collapse
Affiliation(s)
- Bojana Radić
- University of Novi Sad, Institute of Food Technology in Novi Sad, Novi Sad, Serbia
| | - Jovana Kos
- University of Novi Sad, Institute of Food Technology in Novi Sad, Novi Sad, Serbia
| | | | - Alexandra Malachová
- Department IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Department IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Michael Sulyok
- Department IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| |
Collapse
|
7
|
Ezekiel CN, Ayeni KI, Akinyemi MO, Sulyok M, Oyedele OA, Babalola DA, Ogara IM, Krska R. Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria. Toxins (Basel) 2021; 13:635. [PMID: 34564639 PMCID: PMC8472633 DOI: 10.3390/toxins13090635] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
This study characterized the health risks due to the consumption of mycotoxin-contaminated foods and assessed the consumer awareness level of mycotoxins in households in two north-central Nigerian states during the harvest and storage seasons of 2018. Twenty-six mycotoxins and 121 other microbial and plant metabolites were quantified by LC-MS/MS in 250 samples of cereals, nuts and legumes. Aflatoxins were detected in all food types (cowpea, maize, peanut and sorghum) except in millet. Aflatoxin B1 was the most prevalent mycotoxin in peanut (64%) and rice (57%), while fumonisin B1 occurred most in maize (93%) and beauvericin in sorghum (71%). The total aflatoxin concentration was highest in peanut (max: 8422 µg/kg; mean: 1281 µg/kg) and rice (max: 955 µg/kg; mean: 94 µg/kg), whereas the totals of the B-type fumonisins and citrinin were highest in maize (max: 68,204 µg/kg; mean: 2988 µg/kg) and sorghum (max: 1335 µg/kg; mean: 186 µg/kg), respectively. Citrinin levels also reached 51,195 µg/kg (mean: 2343 µg/kg) in maize. Aflatoxin and citrinin concentrations in maize were significantly (p < 0.05) higher during storage than at harvest. The estimated chronic exposures to aflatoxins, citrinin and fumonisins were high, resulting in as much as 247 new liver cancer cases/year/100,000 population and risks of nephrotoxicity and esophageal cancer, respectively. Children who consumed the foods were the most vulnerable. Mycotoxin co-occurrence was evident, which could increase the health risk of the outcomes. Awareness of mycotoxin issues was generally low among the households.
Collapse
Affiliation(s)
- Chibundu N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
| | - Kolawole I. Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
| | - Muiz O. Akinyemi
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
| | - Oluwawapelumi A. Oyedele
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria; (K.I.A.); (M.O.A.); (O.A.O.)
| | - Daniel A. Babalola
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria;
| | - Isaac M. Ogara
- Faculty of Agriculture, Lafia Campus, Nasarawa State University, Keffi 950101, Nasarawa State, Nigeria;
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK
| |
Collapse
|
8
|
Janić Hajnal E, Kos J, Pezo L, Radić B, Malachová A, Krska R, Sulyok M. Presence of
Alternaria
toxins in maize from Republic of Serbia during 2016–2017. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizabet Janić Hajnal
- Institute of Food Technology in Novi Sad University of Novi Sad Novi Sad Republic of Serbia
| | - Jovana Kos
- Institute of Food Technology in Novi Sad University of Novi Sad Novi Sad Republic of Serbia
| | - Lato Pezo
- Institute of General and Physical Chemistry University of Belgrade Belgrade Republic of Serbia
| | - Bojana Radić
- Institute of Food Technology in Novi Sad University of Novi Sad Novi Sad Republic of Serbia
| | - Alexandra Malachová
- Department IFA‐Tulln University of Natural Resources and Life Sciences Vienna (BOKU) Tulln Austria
| | - Rudolf Krska
- Department IFA‐Tulln University of Natural Resources and Life Sciences Vienna (BOKU) Tulln Austria
| | - Michael Sulyok
- Department IFA‐Tulln University of Natural Resources and Life Sciences Vienna (BOKU) Tulln Austria
| |
Collapse
|