1
|
Vani V, Vasan SS, Adiga SK, Varsha SR, Seshagiri PB. Molecular regulators of human blastocyst development and hatching: Their significance in implantation and pregnancy outcome. Am J Reprod Immunol 2023; 89:e13635. [PMID: 36254379 DOI: 10.1111/aji.13635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 02/01/2023] Open
Abstract
In humans, blastocyst hatching and implantation events are two sequential, critically linked and rate-limiting events for a prospective pregnancy. These events are regulated by embryo-endometrium derived molecular factors which include hormones, growth factors, cytokines, immune-modulators, cell adhesion molecules and proteases. Due to poor viability of blastocysts, they fail to hatch and implant, leading to a low 'Live Birth Rates', majorly contributing to infertility. Here, embryo-derived biomarkers analysis plays a key role to assess potential biological viability of blastocysts which are capable of implantation and prospective pregnancy. Thus far, embryo-derived biomarkers examined are mostly immune-modulators which are thought to be associated with blastocyst development-implantation and progression of pregnancy, leading to live births. There is an urgent need to develop a quantitative and a reliable non-invasive approach aiding embryo selection for elective single embryo transfer and to minimize recurrent pregnancy loss and multiple pregnancies. In this article, we provide a comprehensive review on our current knowledge and understanding of potential embryo-derived molecular regulators, that is, biomarkers, of development of human blastocysts, their hatching and implantation. We discuss their potential implications in the assessment of blastocyst implantation potential and pregnancy outcome in terms of live births in humans.
Collapse
Affiliation(s)
- Venkatappa Vani
- Indian Institute of Science, Department of Molecular Reproduction, Development and Genetics, Sir C.V. Raman Road, Bangalore, Karnataka, India
| | | | - Satish K Adiga
- Kasturba Medical College, Department of Clinical Embryology, Manipal, Karnataka, India
| | | | - Polani B Seshagiri
- Indian Institute of Science, Department of Molecular Reproduction, Development and Genetics, Sir C.V. Raman Road, Bangalore, Karnataka, India
| |
Collapse
|
2
|
Kanaka V, Proikakis S, Drakakis P, Loutradis D, Tsangaris GT. Implementing a preimplantation proteomic approach to advance assisted reproduction technologies in the framework of predictive, preventive, and personalized medicine. EPMA J 2022; 13:237-260. [PMID: 35719135 PMCID: PMC9203609 DOI: 10.1007/s13167-022-00282-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/05/2022] [Indexed: 10/28/2022]
Abstract
The evolution of the field of assisted reproduction technology (ART) in the last 40 years has significantly contributed to the management of global infertility. Despite the great numbers of live births that have been achieved through ART, there is still potential for increasing the success rates. As a result, there is a need to create optimum conditions in order to increase ART efficacy. The selection of the best sperm, oocyte, and embryo, as well as the achievement of optimal endometrial receptivity, through the contribution of new diagnostic and treatment methods, based on a personalized proteomic approach, may assist in the attainment of this goal. Proteomics represent a powerful new technological development, which seeks for protein biomarkers in human tissues. These biomarkers may aid to predict the outcome, prevent failure, and monitor in a personalized manner in vitro fertilization (IVF) cycles. In this review, we will present data from studies that have been conducted in the search for such biomarkers in order to identify proteins related to good sperm, oocyte, and embryo quality, as well as optimal endometrial receptivity, which may later lead to greater results and the desirable ART outcome.
Collapse
Affiliation(s)
- Vasiliki Kanaka
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Stavros Proikakis
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Dimitrios Loutradis
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
3
|
Li J, Li C, Liu X, Yang J, Zhang Q, Han W, Huang G. GDF9 concentration in embryo culture medium is linked to human embryo quality and viability. J Assist Reprod Genet 2022; 39:117-125. [PMID: 34845575 PMCID: PMC8866627 DOI: 10.1007/s10815-021-02368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE We aimed to evaluate the link between the GDF9 concentration in day 3 human embryo culture medium and embryo quality and viability. METHODS Two independent, prospective, observational studies were conducted. In study 1, a total of 280 embryos from 70 patients who obtained at least 4 embryos with 6-10 blastomeres (2 transferable and 2 non-transferable embryos) at day 3 were enrolled. In study 2, a total of 119 embryos from 61 patients (29 fully implanted and 32 non-implanted patients) were enrolled. The corresponding GDF9 concentrations in spent culture medium of embryos were quantified by ELISA assay. The expression pattern of GDF9 in human embryos was investigated using Q-PCR and immunofluorescence. RESULTS GDF9 mRNA and protein were detected from human oocytes to eight-cell embryos and displayed a slow decreasing trend. In study 1, GDF9 concentration in culture medium is lower for transferable embryos compared with non-transferable embryos (331 pg/mL (quartiles: 442, 664 pg/mL) vs. 518 pg/mL (quartiles: 328, 1086 pg/mL), P < 0.001), and increased commensurate with the diminution of the embryo quality (P < 0.001). In study 2, significantly lower GDF9 concentration was detected for implanted embryos than non-implanted embryos (331 pg/mL (quartiles: 156, 665 pg/mL) vs. 518 pg/mL (quartiles: 328, 1086 pg/mL), P < 0.001). The same trend was found between the embryos that led to live birth and those that failed. CONCLUSION The GDF9 concentration in culture medium is linked to embryo quality and viability, and exhibited the potential to be a non-invasive biomarker for embryo selection.
Collapse
Affiliation(s)
- Jingyu Li
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
| | - Chong Li
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
| | - Xuemei Liu
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
| | - Jingwei Yang
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
| | - Qi Zhang
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
| | - Wei Han
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China
| | - Guoning Huang
- Chongqing Reproduction and Genetics Institute, Chongqing Health Center for Women and Children, No.64 Jin Tang Street, Yu Zhong District, Chongqing, 400013 China ,Chongqing Key Laboratory of Human Embryo Engineering, Chongqing, China ,Chongqing Clinical Research Center for Reproductive Medicine, Chongqing, China
| |
Collapse
|
4
|
Vani V, Vasan SS, Adiga SK, Varsha SR, Sachdeva G, Kumar P, Seshagiri PB. Soluble human leukocyte antigen-G is a potential embryo viability biomarker and a positive predictor of live-births in humans. Am J Reprod Immunol 2021; 86:e13499. [PMID: 34766406 DOI: 10.1111/aji.13499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/18/2021] [Accepted: 09/20/2021] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Human infertility affects 15-20% of reproductive-age couples and it is mitigated by assisted reproductive technology (ART) approaches. Poor biological viability of embryos contributes to implantation failure and live birth rate (LBR). This study is aimed to examine whether or not embryo-secreted soluble human leukocyte antigen-G (sHLA-G) is (i) associated with developing embryos and (ii) able to predict successful pregnancy outcome. METHOD OF STUDY A retrospective, multicentric study using 539 human embryo spent medium samples (E-SMs), analysed for sHLA-G levels by ELISA. Correlation analysis was performed on sHLA-G levels with developing embryonic stages, their quality scores and pregnancy outcome in terms of LBR. RESULTS Of 539 E-SMs analysed, 445 had detectable sHLA-G (83%) with levels varying within and across clinics and, between stages of embryonic development. Levels of sHLA-G (ng/mL) were significantly (P < .05) different in E-SMs of cleavage-stage embryos versus blastocysts. There was an insignificant correlation between the sHLA-G levels and morphology scores of embryos. But, sHLA-G levels showed a positive correlation with grades of blastocysts and importantly, its levels were significantly (P < .05) higher in live-birth vis-a-vis no-birth cases. Also, levels were higher in live-births out of blastocysts-ETs versus cleavage-stage-embryo transfers. Altered levels were observed with embryos, which resulted in miscarriages. Overall, a significant (P < .0001) association of sHLA-G with live births was observed. CONCLUSION Embryo-derived sHLA-G can be a valuable embryo viability, independent, biomarker, which can predict live-birth outcome and it could be useful as an adjunct to existing criteria for elective single embryo transfer.
Collapse
Affiliation(s)
- Venkatappa Vani
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir C.V. Raman Road, Bangalore, India
| | - Satya S Vasan
- Manipal Ankur Andrology & Reproductive Services, Bangalore, India
| | - Satish K Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, India
| | | | | | - Pratap Kumar
- Department of Reproductive Medicine & Surgery, Kasturba Medical College, Manipal, India
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir C.V. Raman Road, Bangalore, India
| |
Collapse
|
5
|
Gombos K, Gálik B, Kalács KI, Gödöny K, Várnagy Á, Alpár D, Bódis J, Gyenesei A, Kovács GL. NGS-Based Application for Routine Non-Invasive Pre-Implantation Genetic Assessment in IVF. Int J Mol Sci 2021; 22:ijms22052443. [PMID: 33671014 PMCID: PMC7957524 DOI: 10.3390/ijms22052443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/04/2023] Open
Abstract
Although non-invasive pre-implantation genetic testing for aneuploidy (NIPGT-A) is potentially appropriate to assess chromosomal ploidy of the embryo, practical application of it in a routine IVF centre have not been started in the absence of a recommendation. Our objective in this study was to provide a comprehensive workflow for a clinically applicable strategy for NIPGT-A based on next-generation sequencing (NGS) technology with the corresponding bioinformatic pipeline. In a retrospective study, we performed NGS on spent blastocyst culture media of Day 3 embryos fertilised with intracytoplasmic sperm injection (ICSI) with quality score on morphology assessment using the blank culture media as background control. Chromosomal abnormalities were identified by an optimised bioinformatics pipeline applying copy number variation (CNV) detecting algorithm. In this study, we demonstrate a comprehensive workflow covering both wet- and dry-lab procedures supporting a clinically applicable strategy for NIPGT-A that can be carried out within 48 h, which is critical for the same-cycle blastocyst transfer. The described integrated approach of non-invasive evaluation of embryonic DNA content of the culture media can potentially supplement existing pre-implantation genetic screening methods.
Collapse
Affiliation(s)
- Katalin Gombos
- Szentágothai Research Center, University of Pécs, Ifjúság útja 20., 7624 Pécs, Hungary; (K.G.); (B.G.); (K.I.K.); (Á.V.); (A.G.)
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13., 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary; (K.G.); (J.B.)
| | - Bence Gálik
- Szentágothai Research Center, University of Pécs, Ifjúság útja 20., 7624 Pécs, Hungary; (K.G.); (B.G.); (K.I.K.); (Á.V.); (A.G.)
- Department of Clinical Molecular Biology, Medical University of Bialystok, ul. Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krisztina Ildikó Kalács
- Szentágothai Research Center, University of Pécs, Ifjúság útja 20., 7624 Pécs, Hungary; (K.G.); (B.G.); (K.I.K.); (Á.V.); (A.G.)
| | - Krisztina Gödöny
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary; (K.G.); (J.B.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Édesanyák útja 17, 7624 Pécs, Hungary
| | - Ákos Várnagy
- Szentágothai Research Center, University of Pécs, Ifjúság útja 20., 7624 Pécs, Hungary; (K.G.); (B.G.); (K.I.K.); (Á.V.); (A.G.)
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary; (K.G.); (J.B.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Édesanyák útja 17, 7624 Pécs, Hungary
| | - Donát Alpár
- MTA-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., 1085 Budapest, Hungary;
| | - József Bódis
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary; (K.G.); (J.B.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Édesanyák útja 17, 7624 Pécs, Hungary
| | - Attila Gyenesei
- Szentágothai Research Center, University of Pécs, Ifjúság útja 20., 7624 Pécs, Hungary; (K.G.); (B.G.); (K.I.K.); (Á.V.); (A.G.)
- Department of Clinical Molecular Biology, Medical University of Bialystok, ul. Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Gábor L. Kovács
- Szentágothai Research Center, University of Pécs, Ifjúság útja 20., 7624 Pécs, Hungary; (K.G.); (B.G.); (K.I.K.); (Á.V.); (A.G.)
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13., 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary; (K.G.); (J.B.)
- Correspondence: ; Tel.: +36-72-501-668
| |
Collapse
|