1
|
Yao X, Xie M, Ben Y, Zhu Y, Yang G, Kwong SCW, Zhang Z, Chiu ML. Large scale controlled Fab exchange GMP process to prepare bispecific antibodies. Front Bioeng Biotechnol 2024; 11:1298890. [PMID: 38283167 PMCID: PMC10812119 DOI: 10.3389/fbioe.2023.1298890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
Objective: Bispecific antibodies (BsAbs) have demonstrated significant therapeutic impacts for the treatment of a broad spectrum of diseases that include oncology, auto-immune, and infectious diseases. However, the large-scale production of clinical batches of bispecific antibodies still has many challenges that include having low yield, poor stability, and laborious downstream purification processes. To address such challenges, we describe the optimization of the controlled Fab arm exchange (cFAE) process for the efficient generation of BsAbs. Methods: The process optimization of a large-scale good manufacturing practice (GMP) cFAE strategy to prepare BsAbs was based on screening the parameters of temperature, reduction, oxidation, and buffer exchange. We include critical quality standards for the reducing agent cysteamine hydrochloride. Results: This large-scale production protocol enabled the generation of bispecific antibodies with >90% exchange yield and at >95% purity. The subsequent downstream processing could use typical mAb procedures. Furthermore, we demonstrated that the bispecific generation protocol can be scaled up to ∼60 L reaction scale using parental monoclonal antibodies that were expressed in a 200 L bioreactor. Conclusion: We presented a robust development strategy for the cFAE process that can be used for a larger scale GMP BsAb production.
Collapse
Affiliation(s)
- Xia Yao
- Tavotek Biotherapeutics, Suzhou, China
| | | | | | - Yixiang Zhu
- Bioworkshops (Suzhou) Limited, Suzhou, China
| | | | | | | | - Mark L. Chiu
- Tavotek Biotherapeutics, Suzhou, China
- Tavotek Biotherapeutics, Lower Gwynedd, PA, United States
| |
Collapse
|
2
|
Fawcett C, Tickle JR, Coles CH. Facilitating high throughput bispecific antibody production and potential applications within biopharmaceutical discovery workflows. MAbs 2024; 16:2311992. [PMID: 39674918 DOI: 10.1080/19420862.2024.2311992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 12/17/2024] Open
Abstract
A major driver for the recent investment surge in bispecific antibody (bsAb) platforms and products is the multitude of distinct mechanisms of action that bsAbs offer compared to a combination of two monoclonal antibodies. Four bsAb products were granted first regulatory approvals in the US or EU during 2023 and the biopharmaceutical industry pipeline is brimming with bsAb candidates across a broad range of therapeutic applications. In previously reported bsAb discovery campaigns, following a hypothesis-based choice of two specific target proteins, selections and screening activities have often been performed in mono-specific formats. The conversion to bispecific modalities has usually been positioned toward the end of the discovery process and has involved small numbers of lead molecules, largely due to challenges in expressing, purifying, and analyzing large numbers of bsAbs. In this review, we discuss emerging strategies to facilitate the production of expanded bsAb panels, focusing particularly upon combinatorial methods to generate bsAb matrices. Such technologies will enable screening in. bispecific formats at earlier stages of discovery campaigns, not only widening the accessible protein space to maximize chances of success, but also advancing empirical bi-target validation activities to assess initial target selection hypotheses.
Collapse
Affiliation(s)
- Caitlin Fawcett
- Large Molecule Discovery, GSK, GSK Medicines Research Centre, Stevenage, UK
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Joseph R Tickle
- Large Molecule Discovery, GSK, GSK Medicines Research Centre, Stevenage, UK
| | - Charlotte H Coles
- Large Molecule Discovery, GSK, GSK Medicines Research Centre, Stevenage, UK
| |
Collapse
|
3
|
Wang Y, Qiu H, Minshull J, Tam W, Hu X, Mieczkowski C, Zheng W, Chu C, Liu W, Boldog F, Gustafsson C, Gries JM, Xu W. An innovative platform to improve asymmetric bispecific antibody assembly, purity, and expression level in stable pool and cell line development. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Bispecific Antibodies: A Novel Approach for the Treatment of Solid Tumors. Pharmaceutics 2022; 14:pharmaceutics14112442. [PMID: 36432631 PMCID: PMC9694302 DOI: 10.3390/pharmaceutics14112442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Advancement in sequencing technologies allows for the identification of molecular pathways involved in tumor progression and treatment resistance. Implementation of novel agents targeting these pathways, defined as targeted therapy, significantly improves the prognosis of cancer patients. Targeted therapy also includes the use of monoclonal antibodies (mAbs). These drugs recognize specific oncogenic proteins expressed in cancer cells. However, as with many other types of targeting agents, mAb-based therapy usually fails in the long-term control of cancer progression due to the development of resistance. In many cases, resistance is caused by the activation of alternative pathways involved in cancer progression and the development of immune evasion mechanisms. To overcome this off-target resistance, bispecific antibodies (bsAbs) were developed to simultaneously target differential oncogenic pathway components, tumor-associated antigens (TAA) and immune regulatory molecules. As a result, in the last few years, several bsAbs have been tested or are being tested in cancer patients. A few of them are currently approved for the treatment of some hematologic malignancies but no bsAbs are approved in solid tumors. In this review, we will provide an overview of the state-of-the-art of bsAbs for the treatment of solid malignancies outlining their classification, design, main technologies utilized for production, mechanisms of action, updated clinical evidence and potential limitations.
Collapse
|
5
|
Kim HR, Jung Y, Shin J, Park M, Kweon DH, Ban C. Neuron-recognizable characteristics of peptides recombined using a neuronal binding domain of botulinum neurotoxin. Sci Rep 2022; 12:4980. [PMID: 35322139 PMCID: PMC8943039 DOI: 10.1038/s41598-022-09145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
Recombinant peptides were designed using the C-terminal domain (receptor binding domain, RBD) and its subdomain (peptide A2) of a heavy chain of botulinum neurotoxin A-type 1 (BoNT/A1), which can bind to the luminal domain of synaptic vesicle glycoprotein 2C (SV2C-LD). Peptide A2- or RBD-containing recombinant peptides linked to an enhanced green fluorescence protein (EGFP) were prepared by expression in Escherichia coli. A pull-down assay using SV2C-LD-covered resins showed that the recombinant peptides for CDC297 BoNT/A1, referred to EGFP-A2' and EGFP-RBD', exhibited ≥ 2.0-times stronger binding affinity to SV2C-LD than those for the wild-type BoNT/A1. Using bio-layer interferometry, an equilibrium dissociation rate constant (KD) of EGFP-RBD' to SV2C-LD was determined to be 5.45 μM, which is 33.87- and 15.67-times smaller than the KD values for EGFP and EGFP-A2', respectively. Based on confocal laser fluorescence micrometric analysis, the adsorption/absorption of EGFP-RBD' to/in differentiated PC-12 cells was 2.49- and 1.29-times faster than those of EGFP and EGFP-A2', respectively. Consequently, the recombinant peptides acquired reasonable neuron-specific binding/internalizing ability through the recruitment of RBD'. In conclusion, RBDs of BoNTs are versatile protein domains that can be used to mark neural systems and treat a range of disorders in neural systems.
Collapse
Affiliation(s)
- Hye Rin Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Younghun Jung
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea.,Institute of Biomolecule Control, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jonghyeok Shin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Myungseo Park
- Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Institute of Biomolecule Control, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Biologics Research Center, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea. .,Interdisciplinary Program in BioCosmetics, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
6
|
Mei L, Zappala F, Tsourkas A. Rapid Production of Bispecific Antibodies from Off-the-Shelf IgGs with High Yield and Purity. Bioconjug Chem 2022; 33:134-141. [PMID: 34894663 PMCID: PMC9104846 DOI: 10.1021/acs.bioconjchem.1c00476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bispecific antibodies (BsAb) refer to a class of biomacromolecules that are capable of binding two antigens or epitopes simultaneously. This can elicit unique biological effects that cannot be achieved with either individual antibody or two unlinked antibodies. Bispecific antibodies have been used for targeting effector cells to tumor cells, preferential targeting of cells expressing two target biomarkers over cells expressing either target biomarker individually, or to couple two molecular targets on the same cell surface to trigger unique intracellular signaling pathways. Here, we present two related methods that enable direct, rapid assembly of bispecific antibodies from any two "off-the-shelf" Immunoglobulin G (IgG) antibodies, in as little as 1 day. Both workflows can be summarized into two steps: (1) attach a small photoreactive antibody binding domain (pAbBD) fused to SpyCatcher or SpyTag (peptide-protein partners derived from the S. pyogenes fibronectin-binding protein FbaB) to each component IgG, respectively; (2) assemble the BsAb through the spontaneous isopeptide bond formation that occurs between SpyTag and SpyCatcher. These approaches enable production of BsAbs from any two IgG molecules without the need to elucidate their amino acid sequences or genetically alter their structure. Binding assays and T cell-mediated cytolysis assays were performed to validate the binding and functional properties of Trastuzumab × Cetuximab BsAb and Cetuximab × OKT3 BsAb, respectively. This approach enables rapid, low-cost production of highly homogeneous tetravalent BsAbs in a modular fashion, presenting an opportunity to quickly evaluate antibody pairs in a BsAb format for unique or synergistic functionalities.
Collapse
Affiliation(s)
- Linghan Mei
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Fabiana Zappala
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
7
|
Heng ZSL, Yeo JY, Koh DWS, Gan SKE, Ling WL. Augmenting recombinant antibody production in HEK293E cells: Optimising transfection and culture parameters. Antib Ther 2022; 5:30-41. [PMID: 35146331 PMCID: PMC8825235 DOI: 10.1093/abt/tbac003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 01/06/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Optimising recombinant antibody production is important for cost-effective therapeutics and diagnostics. With impact on commercialisation, higher productivity beyond laboratory scales is highly sought, where efficient production can also accelerate antibody characterisations and investigations.
Methods
Investigating HEK293E cells for mammalian antibody production, various transfection and culture parameters were systematically analysed for antibody light chain production before evaluating them for whole antibody production. Transfection parameters investigated include seeding cell density, the concentration of the transfection reagent and DNA, complexation time, temperature, and volume, as well as culture parameters such as medium replacement, serum deprivation, use of cell maintenance antibiotic, incubation temperature, medium volume, post-transfection harvest day and common nutrient supplements.
Results
Using 2 mL adherent HEK293E cell culture transfections with 25 kDa linear Polyethylenimine in the most optimised parameters, we demonstrated a ~ 2-fold production increase for light chain alone and for whole antibody production reaching 536 and 49 μg respectively in a cost-effective manner. With the addition of peptone, κ light chain increased by ~ 4-fold to 1032 μg while whole antibody increased to a lesser extent by ~ 2.5-fold to 51 μg, with benefits potentially for antibodies limited by their light chains in production.
Conclusions
Our optimised findings show promise for a more efficient and convenient antibody production method through transfection and culture optimisations that can be incorporated to scale up processes and with potential transferability to other mammalian-based recombinant protein production using HEK293E cells.
Statement of Significance
Recombinant antibody production is crucial for antibody research and development. Systematically investigating transfection and culture parameters such as PEI/DNA concentrations, complexation time, volume, and temperature, supplements, etc., we demonstrated a ~ 4-fold light chain alone production increase to 1032 μg and a 2.5-fold whole antibody production increase to 51 μg from 2 mL transfections.
Collapse
Affiliation(s)
- Zealyn Shi-Lin Heng
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Darius Wen-Shuo Koh
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- APD SKEG Pte Ltd., Singapore 439444, Singapore
- James Cook University, Singapore 387380, Singapore
| | - Wei-Li Ling
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| |
Collapse
|
8
|
Hosseini SS, Khalili S, Baradaran B, Bidar N, Shahbazi MA, Mosafer J, Hashemzaei M, Mokhtarzadeh A, Hamblin MR. Bispecific monoclonal antibodies for targeted immunotherapy of solid tumors: Recent advances and clinical trials. Int J Biol Macromol 2020; 167:1030-1047. [PMID: 33197478 DOI: 10.1016/j.ijbiomac.2020.11.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Bispecific antibodie (BsAbs) combine two or more epitope-recognizing sequences into a single protein molecule. The first therapeutic applications of BsAbs were focused on cancer therapy. However, these antibodies have grown to cover a wider disease spectrum, including imaging, diagnosis, prophylaxis, and therapy of inflammatory and autoimmune diseases. BsAbs can be categorized into IgG-like formats and non-IgG-like formats. Different technologies have been used for the construction of BsAbs including "CrossMAb", "Quadroma", "knobs-into-holes" and molecular cloning. The mechanism of action for BsAbs includes the induction of CDC, ADCC, ADCP, apoptosis, and recruitment of cell surface receptors, as well as activation or inhibition of signaling pathways. The first clinical trials included mainly leukemia and lymphoma, but solid tumors are now being investigated. The BsAbs bind to a tumor-specific antigen using one epitope, while the second epitope binds to immune cell receptors such as CD3, CD16, CD64, and CD89, with the goal of stimulating the immune response against cancer cells. Currently, over 20 different commercial methods have been developed for the construction of BsAbs. Three BsAbs are currently clinically approved and marketed, and more than 85 clinical trials are in progress. In the present review, we discuss recent trends in the design, engineering, clinical applications, and clinical trials of BsAbs in solid tumors.
Collapse
Affiliation(s)
- Seyed Samad Hosseini
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Bidar
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jafar Mosafer
- Nanotechnology Research center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, School of Paramedical Science, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
9
|
Wang Q, Chen Y, Park J, Liu X, Hu Y, Wang T, McFarland K, Betenbaugh MJ. Design and Production of Bispecific Antibodies. Antibodies (Basel) 2019; 8:antib8030043. [PMID: 31544849 PMCID: PMC6783844 DOI: 10.3390/antib8030043] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
With the current biotherapeutic market dominated by antibody molecules, bispecific antibodies represent a key component of the next-generation of antibody therapy. Bispecific antibodies can target two different antigens at the same time, such as simultaneously binding tumor cell receptors and recruiting cytotoxic immune cells. Structural diversity has been fast-growing in the bispecific antibody field, creating a plethora of novel bispecific antibody scaffolds, which provide great functional variety. Two common formats of bispecific antibodies on the market are the single-chain variable fragment (scFv)-based (no Fc fragment) antibody and the full-length IgG-like asymmetric antibody. Unlike the conventional monoclonal antibodies, great production challenges with respect to the quantity, quality, and stability of bispecific antibodies have hampered their wider clinical application and acceptance. In this review, we focus on these two major bispecific types and describe recent advances in the design, production, and quality of these molecules, which will enable this important class of biologics to reach their therapeutic potential.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yiqun Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jaeyoung Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiao Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yifeng Hu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tiexin Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kevin McFarland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
10
|
Dietrich S, Gross AW, Becker S, Hock B, Stadlmayr G, Rüker F, Wozniak-Knopp G. Constant domain-exchanged Fab enables specific light chain pairing in heterodimeric bispecific SEED-antibodies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140250. [PMID: 31295556 DOI: 10.1016/j.bbapap.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Bispecific antibodies promise to broadly expand the clinical utility of monoclonal antibody technology. Several approaches for heterodimerization of heavy chains have been established to produce antibodies with two different Fab arms, but promiscuous pairing of heavy and light chains remains a challenge for their manufacturing. METHODS We have designed a solution in which the CH1 and CL domain pair in one of the Fab fragments is replaced with a CH3-domain pair and heterodimerized to facilitate correct modified Fab-chain pairing in bispecific heterodimeric antibodies based on a strand-exchange engineered domain (SEED) scaffold with specificity for epithelial growth factor receptor and either CD3 or CD16 (FcγRIII). RESULTS Bispecific antibodies retained binding to their target antigens and redirected primary T cells or NK cells to induce potent killing of target cells. All antibodies were expressed at a high yield in Expi293F cells, were detected as single sharp symmetrical peaks in size exclusion chromatography and retained high thermostability. Mass spectrometric analysis revealed specific heavy-to-light chain pairing for the bispecific SEED antibodies as well as for one-armed SEED antibodies co-expressed with two different competing light chains. CONCLUSION Incorporation of a constant domain-exchanged Fab fragment into a SEED antibody yields functional molecules with favorable biophysical properties. GENERAL SIGNIFICANCE Our results show that the novel engineered bispecific SEED antibody scaffold with an incorporated Fab fragment with CH3-exchanged constant domains is a promising tool for the generation of complete heterodimeric bispecific antibodies with correct light chain pairing.
Collapse
Affiliation(s)
- Sylvia Dietrich
- Christian Doppler Laboratory for Antibody Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Alec W Gross
- Protein Engineering and Antibody Technologies, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Björn Hock
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Gerhard Stadlmayr
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Florian Rüker
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Gordana Wozniak-Knopp
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
11
|
Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18:585-608. [DOI: 10.1038/s41573-019-0028-1] [Citation(s) in RCA: 493] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Gomez N, Wieczorek A, Lu F, Bruno R, Diaz L, Agrawal NJ, Daris K. Culture temperature modulates half antibody and aggregate formation in a Chinese hamster ovary cell line expressing a bispecific antibody. Biotechnol Bioeng 2018; 115:2930-2940. [DOI: 10.1002/bit.26803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Natalia Gomez
- Pre-Pivotal Drug Substance Technology, Amgen Inc., Thousand Oaks; California
| | | | - Fang Lu
- Pre-Pivotal Drug Substance Technology, Amgen Inc., Thousand Oaks; California
| | - Richele Bruno
- Discovery Research, Amgen Inc., Thousand Oaks; California
| | - Luis Diaz
- Pre-Pivotal Drug Substance Technology, Amgen Inc., Thousand Oaks; California
| | | | - Kristi Daris
- Pre-Pivotal Drug Substance Technology, Amgen Inc., Thousand Oaks; California
| |
Collapse
|
13
|
Abstract
Bispecific antibodies have moved from being an academic curiosity with therapeutic promise to reality, with two molecules being currently commercialized (Hemlibra® and Blincyto®) and many more in clinical trials. The success of bispecific antibodies is mainly due to the continuously growing number of mechanisms of actions (MOA) they enable that are not accessible to monoclonal antibodies. One of the earliest MOA of bispecific antibodies and currently the one with the largest number of clinical trials is the redirecting of the cytotoxic activity of T-cells for oncology applications, now extending its use in infective diseases. The use of bispecific antibodies for crossing the blood-brain barrier is another important application because of its potential to advance the therapeutic options for neurological diseases. Another noteworthy application due to its growing trend is enabling a more tissue-specific delivery or activity of antibodies. The different molecular solutions to the initial hurdles that limited the development of bispecific antibodies have led to the current diverse set of bispecific or multispecific antibody formats that can be grouped into three main categories: IgG-like formats, antibody fragment-based formats, or appended IgG formats. The expanded applications of bispecific antibodies come at the price of additional challenges for clinical development. The rising complexity in their structure may increase the risk of immunogenicity and the multiple antigen specificity complicates the selection of relevant species for safety assessment.
Collapse
Affiliation(s)
- Bushra Husain
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Diego Ellerman
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|