1
|
Dong W, Zhang D, Li Y. CaptureSelect FcXP affinity medium exhibits strong aggregate separation capability. Protein Expr Purif 2024; 220:106503. [PMID: 38759705 DOI: 10.1016/j.pep.2024.106503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Protein A affinity chromatography has been widely used for initial product capture in recombinant antibody/Fc-fusion purification. However, in general Protein A lacks the capability of separating aggregates (unless the aggregates are too large to enter the pores of resin beads or have their Protein A binding sites buried, in which case the aggregates do not bind). In the current work, we demonstrated that CaptureSelect FcXP affinity medium exhibited strong aggregate separation capability and effectively removed aggregates under pH or conductivity gradient elution in two bispecific antibody (bsAb) cases. For these two cases, aggregate contents were reduced from >16% and >22% (in the feed) to <1% and <5% (in the eluate) for the first and second bsAbs, respectively. While more case studies are required to further demonstrate FcXP's superiority in aggregate removal, findings from the current study suggest that FcXP can potentially be a better alternative than Protein A for product capture in cases where aggregate content is high.
Collapse
Affiliation(s)
- Wanyuan Dong
- Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Dan Zhang
- Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Yifeng Li
- Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| |
Collapse
|
2
|
Sakai T, Mashima T, Kobayashi N, Ogata H, Duan L, Fujiki R, Hengphasatporn K, Uda T, Shigeta Y, Hifumi E, Hirota S. Structural and thermodynamic insights into antibody light chain tetramer formation through 3D domain swapping. Nat Commun 2023; 14:7807. [PMID: 38065949 PMCID: PMC10709643 DOI: 10.1038/s41467-023-43443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Overexpression of antibody light chains in small plasma cell clones can lead to misfolding and aggregation. On the other hand, the formation of amyloid fibrils from antibody light chains is related to amyloidosis. Although aggregation of antibody light chain is an important issue, atomic-level structural examinations of antibody light chain aggregates are sparse. In this study, we present an antibody light chain that maintains an equilibrium between its monomeric and tetrameric states. According to data from X-ray crystallography, thermodynamic and kinetic measurements, as well as theoretical studies, this antibody light chain engages in 3D domain swapping within its variable region. Here, a pair of domain-swapped dimers creates a tetramer through hydrophobic interactions, facilitating the revelation of the domain-swapped structure. The negative cotton effect linked to the β-sheet structure, observed around 215 nm in the circular dichroism (CD) spectrum of the tetrameric variable region, is more pronounced than that of the monomer. This suggests that the monomer contains less β-sheet structures and exhibits greater flexibility than the tetramer in solution. These findings not only clarify the domain-swapped structure of the antibody light chain but also contribute to controlling antibody quality and advancing the development of future molecular recognition agents and drugs.
Collapse
Affiliation(s)
- Takahiro Sakai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hideaki Ogata
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Lian Duan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Taizo Uda
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), 4‑1 Kyudai‑Shinmachi, Fukuoka, 879‑5593, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Emi Hifumi
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870‑1192, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
3
|
Wachter S, Angevin T, Bubna N, Tan A, Cichy A, Brown D, Wolfe LS, Sappington R, Lilla E, Berry L, Grismer D, Orth C, Blanusa M, Mostafa S, Kaufmann H, Felderer K. Application of platform process development approaches to the manufacturing of Mabcalin™ bispecifics. J Biotechnol 2023; 377:13-22. [PMID: 37820750 DOI: 10.1016/j.jbiotec.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Bispecific biotherapeutics offer potent and highly specific treatment options in oncology and immuno-oncology. However, many bispecific formats are prone to high levels of aggregation and instability, leading to prolonged development timelines, inefficient manufacturing, and high costs. The novel class of Mabcalin™ molecules consist of Anticalin® proteins fused to an IgG and are currently being evaluated in pre-clinical and clinical studies. Here, we describe a robust high-yield manufacturing platform for these therapeutic fusion proteins providing data up to commercially relevant scales. A platform upstream process was established for one of the Mabcalin bispecifics and then applied to other clinically relevant drug candidates with different IgG target specificities. Process performance was compared in 3 L bioreactors and production was scaled-up to up to 1000 L for confirmation. The Mabcalin proteins' structural and biophysical similarities enabled a downstream platform approach consisting of initial protein A capture, viral inactivation, mixed-mode anion exchange polishing, second polishing by cation exchange or hydrophobic interaction chromatography, viral filtration, buffer exchange and concentration by ultrafiltration/diafiltration. All three processes met their target specifications and achieved comparable clearance of impurities and product yields across scales. The described platform approach provides a fast and economic path to process confirmation and is well comparable to classical monoclonal antibody approaches in terms of costs and time to clinic.
Collapse
Affiliation(s)
- Stefanie Wachter
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany.
| | - Thibaut Angevin
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Niket Bubna
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Adelene Tan
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Adam Cichy
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - David Brown
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Leslie S Wolfe
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Ryan Sappington
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Edward Lilla
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Luke Berry
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Dane Grismer
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Christian Orth
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Milan Blanusa
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Sigma Mostafa
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Hitto Kaufmann
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Karin Felderer
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| |
Collapse
|
4
|
Powell T, Knight MJ, Wood A, O'Hara J, Burkitt W. Detection of Isopeptide Bonds in Monoclonal Antibody Aggregates. Pharm Res 2021; 38:1519-1530. [PMID: 34528168 PMCID: PMC8497302 DOI: 10.1007/s11095-021-03103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
Purpose A major difficulty in monoclonal antibody (mAb) therapeutic development is product aggregation. In this study, intermolecular isopeptide bonds in mAb aggregates were characterized for the first time. We aim to propose a mechanism of covalent aggregation in a model antibody using stressed studies at raised temperatures to aid in the understanding of mAb aggregation pathways. Methods Aggregate fractions were generated using raised temperature and were purified using size-exclusion chromatography (SEC). The fractions were tryptically digested and characterized using liquid chromatography hyphenated to tandem mass-spectrometry (LC–MS/MS). Results An increased amount of clipping between aspartic acid and proline in a solvent accessible loop in the constant heavy 2 (CH2) domain of the mAb was observed under these conditions. Detailed peptide mapping revealed 14 isopeptide bonds between aspartic acid at that cleavage site and lysine residues on adjacent antibodies. Two additional isopeptide bonds were identified between the mAb HC N-terminal glutamic acid or a separate aspartic acid to lysine residues on adjacent antibodies. Conclusions Inter-protein isopeptide bonds between the side chains of acidic amino acids (aspartate and glutamate) and lysine were characterized for the first time in mAb aggregates. A chemical mechanism was presented whereby spontaneous isopeptide bond formation could be facilitated via either the aspartic acid side chain or C-terminus. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-021-03103-y.
Collapse
Affiliation(s)
- Thomas Powell
- Biomolecular Formulation and Characterization Sciences, UCB, Slough, SL3WE, UK.
| | - Michael J Knight
- Biomolecular Formulation and Characterization Sciences, UCB, Slough, SL3WE, UK
| | - Amanda Wood
- Biomolecular Formulation and Characterization Sciences, UCB, Slough, SL3WE, UK
| | - John O'Hara
- Biomolecular Formulation and Characterization Sciences, UCB, Slough, SL3WE, UK
| | - William Burkitt
- Biomolecular Formulation and Characterization Sciences, UCB, Slough, SL3WE, UK
| |
Collapse
|
5
|
Chen SW, Zhang W. Current trends and challenges in the downstream purification of bispecific antibodies. Antib Ther 2021; 4:73-88. [PMID: 34056544 PMCID: PMC8155696 DOI: 10.1093/abt/tbab007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Bispecific antibodies (bsAbs) represent a highly promising class of biotherapeutic modality. The downstream processing of this class of antibodies is therefore of crucial importance in ensuring that these products can be obtained with high purity and yield. Due to the various fundamental structural similarities between bsAbs and monoclonal antibodies (mAbs), many of the current bsAb downstream purification methodologies are based on the established purification processes of mAbs, where affinity, charge, size, hydrophobicity and mixed-mode-based purification are frequently employed. Nevertheless, the downstream processing of bsAbs presents a unique set of challenges due to the presence of bsAb-specific byproducts, such as mispaired products, undesired fragments and higher levels of aggregates, that are otherwise absent or present in lower levels in mAb cell culture supernatants, thus often requiring the design of additional purification strategies in order to obtain products of high purity. Here, we outline the current major purification methods of bsAbs, highlighting the corresponding solutions that have been proposed to circumvent the unique challenges presented by this class of antibodies, including differential affinity chromatography, sequential affinity chromatography and the use of salt additives and pH gradients or multistep elutions in various modes of purification. Finally, a perspective towards future process development is offered.
Collapse
Affiliation(s)
- Serene W Chen
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| |
Collapse
|
6
|
Guo G, Han J, Wang Y, Li Y. A potential downstream platform approach for WuXiBody-based IgG-like bispecific antibodies. Protein Expr Purif 2020; 173:105647. [DOI: 10.1016/j.pep.2020.105647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
|
7
|
Lee CC, Su YC, Ko TP, Lin LL, Yang CY, Chang SSC, Roffler SR, Wang AHJ. Structural basis of polyethylene glycol recognition by antibody. J Biomed Sci 2020; 27:12. [PMID: 31907057 PMCID: PMC6945545 DOI: 10.1186/s12929-019-0589-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/18/2019] [Indexed: 12/28/2022] Open
Abstract
Background Polyethylene glycol (PEG) is widely used in industry and medicine. Anti-PEG antibodies have been developed for characterizing PEGylated drugs and other applications. However, the underlying mechanism for specific PEG binding has not been elucidated. Methods The Fab of two cognate anti-PEG antibodies 3.3 and 2B5 were each crystallized in complex with PEG, and their structures were determined by X-ray diffraction. The PEG-Fab interactions in these two crystals were analyzed and compared with those in a PEG-containing crystal of an unrelated anti-hemagglutinin 32D6-Fab. The PEG-binding stoichiometry was examined by using analytical ultracentrifuge (AUC). Results A common PEG-binding mode to 3.3 and 2B5 is seen with an S-shaped core PEG fragment bound to two dyad-related Fab molecules. A nearby satellite binding site may accommodate parts of a longer PEG molecule. The core PEG fragment mainly interacts with the heavy-chain residues D31, W33, L102, Y103 and Y104, making extensive contacts with the aromatic side chains. At the center of each half-circle of the S-shaped PEG, a water molecule makes alternating hydrogen bonds to the ether oxygen atoms, in a similar configuration to that of a crown ether-bound lysine. Each satellite fragment is clamped between two arginine residues, R52 from the heavy chain and R29 from the light chain, and also interacts with several aromatic side chains. In contrast, the non-specifically bound PEG fragments in the 32D6-Fab crystal are located in the elbow region or at lattice contacts. The AUC data suggest that 3.3-Fab exists as a monomer in PEG-free solution but forms a dimer in the presence of PEG-550-MME, which is about the size of the S-shaped core PEG fragment. Conclusions The differing amino acids in 3.3 and 2B5 are not involved in PEG binding but engaged in dimer formation. In particular, the light-chain residue K53 of 2B5-Fab makes significant contacts with the other Fab in a dimer, whereas the corresponding N53 of 3.3-Fab does not. This difference in the protein-protein interaction between two Fab molecules in a dimer may explain the temperature dependence of 2B5 in PEG binding, as well as its inhibition by crown ether.
Collapse
Affiliation(s)
- Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | - Yu-Cheng Su
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Li-Ling Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Ya Yang
- Medigen Biotechnology Corporation, Taipei, Taiwan
| | - Stanley Shi-Chung Chang
- Medigen Biotechnology Corporation, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Kashi L, Yandrofski K, Preston RJ, Arbogast LW, Giddens JP, Marino JP, Schiel JE, Kelman Z. Heterologous recombinant expression of non-originator NISTmAb. MAbs 2018; 10:922-933. [PMID: 29958062 PMCID: PMC6152460 DOI: 10.1080/19420862.2018.1486355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The successful development and regulatory approval of originator and biosimilar therapeutic proteins requires a systems approach to upstream and downstream processing as well as product characterization and quality control. Innovation in process design and control, product characterization strategies, and data integration represent an ecosystem whose concerted advancement may reduce time-to-market and further improve comparability and biosimilarity programs. The biopharmaceutical community has made great strides to this end, yet there currently exists no pre-competitive monoclonal antibody (mAb) expression platform for open innovation. Here, we describe the development and initial expression of an intended copy of the NISTmAb using three non-originator murine cell lines. It was found that, without optimization and in culture flasks, all three cell lines produce approximately 100 mg mAb per liter of culture. Sodium dodecyl sulfate polyacrylamide gel electrophoresis, size-exclusion chromatography, nuclear magnetic resonance spectroscopy, intact mass spectrometry, and surface plasmon resonance were used to demonstrate that the products of all three cell lines embody quality attributes with a sufficient degree of sameness to the NISTmAb Reference Material 8671 to warrant further bioreactor studies, process improvements and optimization. The implications of the work with regard to pre-competitive innovation to support process design and feedback control, comparability and biosimilarity assessments, and process analytical technologies are discussed.
Collapse
Affiliation(s)
- Lila Kashi
- a Biomolecular Labeling Laboratory , National Institute of Standards and Technology and Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville , MD , USA
| | - Katharina Yandrofski
- b National Institute of Standards and Technology , Institute for Bioscience and Biotechnology Research , Rockville , MD , USA
| | - Renae J Preston
- a Biomolecular Labeling Laboratory , National Institute of Standards and Technology and Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville , MD , USA
| | - Luke W Arbogast
- b National Institute of Standards and Technology , Institute for Bioscience and Biotechnology Research , Rockville , MD , USA
| | - John P Giddens
- b National Institute of Standards and Technology , Institute for Bioscience and Biotechnology Research , Rockville , MD , USA
| | - John P Marino
- b National Institute of Standards and Technology , Institute for Bioscience and Biotechnology Research , Rockville , MD , USA
| | - John E Schiel
- b National Institute of Standards and Technology , Institute for Bioscience and Biotechnology Research , Rockville , MD , USA
| | - Zvi Kelman
- a Biomolecular Labeling Laboratory , National Institute of Standards and Technology and Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville , MD , USA
| |
Collapse
|