1
|
Ladiwala P, Cai X, Naik HM, Aliyu L, Schilling M, Antoniewicz MR, Betenbaugh MJ. Ala-Cys-Cys-Ala dipeptide dimer alleviates problematic cysteine and cystine levels in media formulations and enhances CHO cell growth and metabolism. Metab Eng 2024; 85:105-115. [PMID: 39047893 DOI: 10.1016/j.ymben.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Cysteine and cystine are essential amino acids present in mammalian cell cultures. While contributing to biomass synthesis, recombinant protein production, and antioxidant defense mechanisms, cysteine poses a major challenge in media formulations owing to its poor stability and oxidation to cystine, a cysteine dimer. Due to its poor solubility, cystine can cause precipitation of feed media, formation of undesired products, and consequently, reduce cysteine bioavailability. In this study, a highly soluble cysteine containing dipeptide dimer, Ala-Cys-Cys-Ala (ACCA), was evaluated as a suitable alternative to cysteine and cystine in CHO cell cultures. Replacing cysteine and cystine in basal medium with ACCA did not sustain cell growth. However, addition of ACCA at 4 mM and 8 mM to basal medium containing cysteine and cystine boosted cell growth up to 15% and 27% in CHO-GS and CHO-K1 batch cell cultures respectively and led to a proportionate increase in IgG titer. 13C-Metabolic flux analysis revealed that supplementation of ACCA reduced glycolytic fluxes by 20% leading to more efficient glucose metabolism in CHO-K1 cells. In fed-batch cultures, ACCA was able to replace cysteine and cystine in feed medium. Furthermore, supplementation of ACCA at high concentrations in basal medium eliminated the need for any cysteine equivalents in feed medium and increased cell densities and viabilities in fed-batch cultures without any significant impact on IgG charge variants. Taken together, this study demonstrates the potential of ACCA to improve CHO cell growth, productivity, and metabolism while also facilitating the formulation of cysteine- and cystine-free feed media. Such alternatives to cysteine and cystine will pave the way for enhanced biomanufacturing by increasing cell densities in culture and extending the storage of highly concentrated feed media as part of achieving intensified bioproduction processes.
Collapse
Affiliation(s)
- Pranay Ladiwala
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Xiangchen Cai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Harnish Mukesh Naik
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Lateef Aliyu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Maciek R Antoniewicz
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
2
|
Liu Q, Hong J, Zhang Y, Wang Q, Xia Q, Knierman MD, Lau J, Dayaratna C, Negron B, Nanda H, Gunawardena HP. Rapid identification of antibody impurities in size-based electrophoresis via CZE-MS generated spectral library. Sci Rep 2024; 14:20239. [PMID: 39215123 PMCID: PMC11364755 DOI: 10.1038/s41598-024-70914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Methods for the reliable and effective detection and identification of impurities are crucial to ensure the quality and safety of biopharmaceutical products. Technical limitations constrain the accurate identification of individual impurity peaks by size-based electrophoresis separations followed by mass spectrometry. This study presents a size-based electrophoretic method for detecting and identifying impurity peaks in antibody production. A hydrogen sulfide-accelerated degradation method was employed to generate known degradation products observed in bioreactors that forms the basis for size calibration. LabChip GXII channel electrophoresis enabled the rapid (< 1 min) detection of impurity peaks based on size, while capillary zone electrophoresis-mass spectrometry (CZE-MS) facilitated their accurate identification. We combine these techniques to examine impurities resulting from cell culture harvest conditions and forced degradation to assess antibody stability. To mimic cell culture harvest conditions and the impact of forced degradation, we subjected samples to cathepsin at different pH buffers or exposed them to high pH and temperature. Our method demonstrated the feasibility and broad applicability of using a CZE-MS generated spectral library to unambiguously assign peaks in high throughput size-based electrophoresis (i.e., LabChip GXII) with identifications or likely mass of the antibody impurity. Overall, this strategy combines the utility of CZE-MS as a high-resolution separation and detection method for impurities with size-based electrophoresis methods that are typically used to detect (not identify) impurities during the discovery and development of antibody therapeutics.
Collapse
Affiliation(s)
- Quan Liu
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Jiaying Hong
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Yukun Zhang
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Qiuyue Wang
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Qiangwei Xia
- CMP Scientific Corp, 760 Parkside Ave, STE 211, Brooklyn, NY, 11226, USA
| | - Michael D Knierman
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA, 95051, USA
| | - Jim Lau
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA, 95051, USA
| | - Caleen Dayaratna
- Johnson & Johnson Innovative Medicine Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Benjamin Negron
- Johnson & Johnson Innovative Medicine Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Hirsh Nanda
- Johnson & Johnson Innovative Medicine Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Harsha P Gunawardena
- Johnson & Johnson Innovative Medicine Research & Development, 1400 McKean Road, Spring House, PA, 19477, USA.
| |
Collapse
|
3
|
Yamaguchi T, Ishikawa H, Fukuda M, Sugita Y, Furuie M, Nagano R, Suzawa T, Yamamoto K, Wakamatsu K. Catechins prevent monoclonal antibody fragmentation during production via fed-batch culture of Chinese hamster ovary cells. Biotechnol Prog 2024; 40:e3447. [PMID: 38415979 DOI: 10.1002/btpr.3447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Chinese hamster ovary (CHO) cells are widely used for the industrial production of therapeutic monoclonal antibodies (mAbs). To meet the increasing market demands, high productivity, and quality are required in cell culture. One of the critical attributes of mAbs, from a safety perspective, is mAb fragmentation. However, methods for preventing mAbs fragmentation in CHO cell culture are limited. In this study, we observed that the antibody fragment content increased with increasing titers in fed-batch cultures for all three cell lines expressing recombinant antibodies. Adding copper sulfate to the culture medium further increased the fragment content, suggesting the involvement of reactive oxygen species (ROS) in the fragmentation process. Though antioxidants may be helpful to scavenge ROS, several antioxidants are reported to decrease the productivity of CHO cells. Among the antioxidants examined, we observed that the addition of catechin or (-)-epigallocatechin gallate to the culture medium prevented fragmentation content by about 20% and increased viable cell density and titer by 30% and 10%, respectively. Thus, the addition of catechins or compounds of equivalent function would be beneficial for manufacturing therapeutic mAbs with a balance between high titers and good quality.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Science and Technology, Gunma University, Gunma, Japan
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Hiroko Ishikawa
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Mie Fukuda
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Yumi Sugita
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Misaki Furuie
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Ryuma Nagano
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | | | - Koichi Yamamoto
- Bio Process Research and Development Laboratories, Production Division, Kyowa Kirin Co. Ltd., Takasaki, Gunma, Japan
| | - Kaori Wakamatsu
- Graduate School of Science and Technology, Gunma University, Gunma, Japan
| |
Collapse
|
4
|
Geng SL, Zhao XJ, Zhang X, Zhang JH, Mi CL, Wang TY. Recombinant therapeutic proteins degradation and overcoming strategies in CHO cells. Appl Microbiol Biotechnol 2024; 108:182. [PMID: 38285115 PMCID: PMC10824870 DOI: 10.1007/s00253-024-13008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modification similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies are among the most important and promising RTPs for biomedical applications. One of the issues that occurs during development of RTPs is their degradation, which caused by a variety of factors and reducing quality of RTPs. RTP degradation is especially concerning as they could result in reduced biological functions (antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity) and generate potentially immunogenic species. Therefore, the mechanisms underlying RTP degradation and strategies for avoiding degradation have regained an interest from academia and industry. In this review, we outline recent progress in this field, with a focus on factors that cause degradation during RTP production and the development of strategies for overcoming RTP degradation. KEY POINTS: • The recombinant therapeutic protein degradation in CHO cell systems is reviewed. • Enzymatic factors and non-enzymatic methods influence recombinant therapeutic protein degradation. • Reducing the degradation can improve the quality of recombinant therapeutic proteins.
Collapse
Affiliation(s)
- Shao-Lei Geng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xiao-Jie Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xi Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ji-Hong Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Engineering Research Center for Biopharmaceutical Innovation, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
5
|
Sun Z, Huang M, Sokolowska I, Cao R, Chang K, Hu P, Mo J. Impact of Trisulfide on the Structure and Function of Different Antibody Constructs. J Pharm Sci 2023; 112:2637-2643. [PMID: 37595748 DOI: 10.1016/j.xphs.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Trisulfide is a post-translational modification (PTM) commonly found in recombinant antibodies. It has been demonstrated that trisulfide had no impact on the bioactivity of mono-specific antibodies (MsAbs). However, the impact of trisulfide on multi-specific antibodies has not been evaluated. In this study, two mass spectrometric methods were developed for comprehensive trisulfide characterization. The non-reduced peptide mapping method combined with the unique electron activated dissociation (EAD) provided signature fragments for confident trisulfide identification as well as trisulfide quantitation at individual sites. A higher throughput method using Fab mass analysis was also developed and qualified to support routine monitoring of trisulfide during process development. Fab mass analysis features simpler sample preparation and shorter analysis time but provides comparable results to the non-reduced peptide mapping method. In this study, a bi-specific (BsAb) and a tri-specific antibody (TsAb) were compared side-by-side with a MsAb to evaluate the impact of trisulfide on the structure and function of multi-specific antibodies. Results indicated that trisulfide dominantly formed at similar locations across different antibody constructs and had no impact on the size heterogeneity, charge heterogeneity, or bioactivities of any assessed antibodies. Together with the in vitro stability under heat stress (25 °C and 40 °C for up to four weeks) and rapid conversion from trisulfide to disulfide during in vivo circulation, trisulfide could be categorized as a non-critical quality attribute (non-CQA) for antibody products.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Analytical Development, Discovery, Product Development & Supply, Janssen Research & Development, LLC, Malvern, PA 19355, USA
| | - Maggie Huang
- Analytical Development, Discovery, Product Development & Supply, Janssen Research & Development, LLC, Malvern, PA 19355, USA
| | - Izabela Sokolowska
- Analytical Development, Discovery, Product Development & Supply, Janssen Research & Development, LLC, Malvern, PA 19355, USA
| | - Rui Cao
- Analytical Development, Discovery, Product Development & Supply, Janssen Research & Development, LLC, Malvern, PA 19355, USA
| | - Kern Chang
- Analytical Development, Discovery, Product Development & Supply, Janssen Research & Development, LLC, Malvern, PA 19355, USA
| | - Ping Hu
- Analytical Development, Discovery, Product Development & Supply, Janssen Research & Development, LLC, Malvern, PA 19355, USA.
| | - Jingjie Mo
- Analytical Development, Discovery, Product Development & Supply, Janssen Research & Development, LLC, Malvern, PA 19355, USA.
| |
Collapse
|
6
|
Nguyen M, Le Mignon M, Schnellbächer A, Wehsling M, Braun J, Baumgaertner J, Grabner M, Zimmer A. Mechanistic insights into the biological activity of S-Sulfocysteine in CHO cells using a multi-omics approach. Front Bioeng Biotechnol 2023; 11:1230422. [PMID: 37680342 PMCID: PMC10482334 DOI: 10.3389/fbioe.2023.1230422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
S-Sulfocysteine (SSC), a bioavailable L-cysteine derivative (Cys), is known to be taken up and metabolized in Chinese hamster ovary (CHO) cells used to produce novel therapeutic biological entities. To gain a deeper mechanistic insight into the SSC biological activity and metabolization, a multi-omics study was performed on industrially relevant CHO-K1 GS cells throughout a fed-batch process, including metabolomic and proteomic profiling combined with multivariate data and pathway analyses. Multi-layered data and enzymatical assays revealed an intracellular SSC/glutathione mixed disulfide formation and glutaredoxin-mediated reduction, releasing Cys and sulfur species. Increased Cys availability was directed towards glutathione and taurine synthesis, while other Cys catabolic pathways were likewise affected, indicating that cells strive to maintain Cys homeostasis and cellular functions.
Collapse
Affiliation(s)
- Melanie Nguyen
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | - Maria Wehsling
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| | - Julian Braun
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| | - Jens Baumgaertner
- Biomolecule Analytics and Proteomics, Merck KGaA, Darmstadt, Germany
| | | | - Aline Zimmer
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| |
Collapse
|
7
|
Factors affecting the quality of therapeutic proteins in recombinant Chinese hamster ovary cell culture. Biotechnol Adv 2021; 54:107831. [PMID: 34480988 DOI: 10.1016/j.biotechadv.2021.107831] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used mammalian host cells for the commercial production of therapeutic proteins. Fed-batch culture is widely used to produce therapeutic proteins, including monoclonal antibodies, because of its operational simplicity and high product titer. Despite technical advances in the development of culture media and cell cultures, it is still challenging to maintain high productivity in fed-batch cultures while also ensuring good product quality. In this review, factors that affect the quality attributes of therapeutic proteins in recombinant CHO (rCHO) cell culture, such as glycosylation, charge variation, aggregation, and degradation, are summarized and categorized into three groups: culture environments, chemical additives, and host cell proteins accumulated in culture supernatants. Understanding the factors that influence the therapeutic protein quality in rCHO cell culture will facilitate the development of large-scale, high-yield fed-batch culture processes for the production of high-quality therapeutic proteins.
Collapse
|
8
|
Cai CX, Schneck NA, Cozine T, Ivleva VB, Ragheb D, Gollapudi D, Patel A, Barefoot N, Gowetski DB, Lei QP. Investigation of Cysteine Modifications in Recombinant Protein Tetanus Toxoid Heavy Chain Fragment C. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1837-1840. [PMID: 34167299 PMCID: PMC9241332 DOI: 10.1021/jasms.1c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For conjugated HIV-1 fusion peptide vaccine development, recombinant Tetanus toxoid heavy chain fragment C (rTTHC) was applied as a carrier protein to boost peptide immunogenicity. Understanding the characteristics of rTTHC is the first step prior to the peptide conjugation. A comprehensive mass spectrometry (MS) characterization was performed on E. coli expressed rTTHC during its purification process. Intact mass along with peptide mapping analysis discovered the existence of three cysteine modification forms: glutathionylation, trisulfide bond modification, and disulfide bond shuffling, in correlation to a three-peak profile during a hydrophobic interaction chromatography (HIC) purification step. Coexistence of these multiple oxidative forms indicated that the active thiols underwent redox reaction in the rTTHC material. Identity confirmation of the rTTHC carrier protein by MS analysis provided pivotal guidance to assess the purification step and helped ensure that vaccine development could proceed.
Collapse
Affiliation(s)
- Cindy X Cai
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, Maryland 20878, United States
| | - Nicole A Schneck
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, Maryland 20878, United States
| | - Taryn Cozine
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, Maryland 20878, United States
| | - Vera B Ivleva
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, Maryland 20878, United States
| | - Daniel Ragheb
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, Maryland 20878, United States
| | - Deepika Gollapudi
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, Maryland 20878, United States
| | - Aakash Patel
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, Maryland 20878, United States
| | - Nathan Barefoot
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, Maryland 20878, United States
| | - Daniel B Gowetski
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, Maryland 20878, United States
| | - Q Paula Lei
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, Maryland 20878, United States
| |
Collapse
|
9
|
Chevallier V, Zoller M, Kochanowski N, Andersen MR, Workman CT, Malphettes L. Use of novel cystine analogs to decrease oxidative stress and control product quality. J Biotechnol 2020; 327:1-8. [PMID: 33373629 DOI: 10.1016/j.jbiotec.2020.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Continuous improvements of cell culture media are required in order to ensure high yield and product quality. However, some components can be instable and lead to detrimental effects on bioprocess performances. l-cysteine is an essential amino acid commonly used in cell culture media. Despite its beneficial effect on recombinant protein production, in some cases, this component can be responsible for product microheterogeneity. In this context, alternative components have to be found in order to reduce product variants while maintaining high productivity. In this study, we have assessed the performance of different cysteine and cystine analogs : N-acetyl-cysteine, s-sulfocysteine, N,N'-diacetyl-l-cystine and the N,N'-diacetyl-l-cystine dimethylester (DACDM). Replacement of cysteine by cystine analogs, and especially DACDM, has shown positive impact on charge variants level and recombinant protein coloration level. Moreover, this molecule contributed to the increase of the intracellular glutathione pool, which suggests a close relationship with the oxidative stress regulation.
Collapse
Affiliation(s)
- Valentine Chevallier
- UCB Nordic A/S, Upstream Process Sciences, Copenhagen, Denmark; Technical University of Denmark, Department of Biotechnology and Biomedicine, Kgs. Lyngby, Denmark.
| | - Marvin Zoller
- UCB Pharma S.A., Upstream Process Sciences, Braine l'Alleud, Belgium
| | | | - Mikael R Andersen
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Kgs. Lyngby, Denmark
| | - Christopher T Workman
- Technical University of Denmark, Department of Biotechnology and Biomedicine, Kgs. Lyngby, Denmark
| | | |
Collapse
|
10
|
Prade E, Zeck A, Stiefel F, Unsoeld A, Mentrup D, Arango Gutierrez E, Gorr IH. Cysteine in cell culture media induces acidic IgG1 species by disrupting the disulfide bond network. Biotechnol Bioeng 2020; 118:1091-1104. [PMID: 33200817 PMCID: PMC7986432 DOI: 10.1002/bit.27628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 01/16/2023]
Abstract
A high degree of charge heterogeneity is an unfavorable phenomenon commonly observed for therapeutic monoclonal antibodies (mAbs). Removal of these impurities during manufacturing often comes at the cost of impaired step yields. A wide spectrum of posttranslational and chemical modifications is known to modify mAb charge. However, a deeper understanding of underlying mechanisms triggering charged species would be beneficial for the control of mAb charge variants during bioprocessing. In this study, a comprehensive analytical investigation was carried out to define the root causes and mechanisms inducing acidic variants of an immunoglobulin G1‐derived mAb. Characterization of differently charged species by liquid chromatography–mass spectrometry revealed the reduction of disulfide bonds in acidic variants, which is followed by cysteinylation and glutathionylation of cysteines. Importantly, biophysical stability and integrity of the mAb are not affected. By in vitro incubation of the mAb with the reducing agent cysteine, disulfide bond degradation was directly linked to an increase of numerous acidic species. Modifying the concentrations of cysteine during the fermentation of various mAbs illustrated that redox potential is a critical aspect to consider during bioprocess development with respect to charge variant control.
Collapse
Affiliation(s)
- Elke Prade
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Anne Zeck
- Pharma and Biotech, NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Fabian Stiefel
- Late Stage USP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Andreas Unsoeld
- Late Stage USP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David Mentrup
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Erik Arango Gutierrez
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ingo H Gorr
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
11
|
Carrara SC, Ulitzka M, Grzeschik J, Kornmann H, Hock B, Kolmar H. From cell line development to the formulated drug product: The art of manufacturing therapeutic monoclonal antibodies. Int J Pharm 2020; 594:120164. [PMID: 33309833 DOI: 10.1016/j.ijpharm.2020.120164] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic monoclonal antibodies and related products have steadily grown to become the dominant product class within the biopharmaceutical market. Production of antibodies requires special precautions to ensure safety and efficacy of the product. In particular, minimizing antibody product heterogeneity is crucial as drug substance variants may impair the activity, efficacy, safety, and pharmacokinetic properties of an antibody, consequently resulting in the failure of a product in pre-clinical and clinical development. This review will cover the manufacturing and formulation challenges and advances of therapeutic monoclonal antibodies, focusing on improved processes to minimize variants and ensure batch-to-batch consistency. Processes put in place by regulatory agencies, such as Quality-by-Design (QbD) and current Good Manufacturing Practices (cGMP), and how their implementation has aided drug development in pharmaceutical companies will be reviewed. Advances in formulation and considerations on the intended use of a therapeutic antibody, including the route of administration and patient compliance, will be discussed.
Collapse
Affiliation(s)
- Stefania C Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Ferring Darmstadt Laboratory, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany; Ferring Darmstadt Laboratory, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Henri Kornmann
- Ferring International Center SA, CH-1162 Saint-Prex, Switzerland
| | - Björn Hock
- Ferring International Center SA, CH-1162 Saint-Prex, Switzerland.
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
| |
Collapse
|
12
|
Chevallier V, Andersen MR, Malphettes L. Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnol Bioeng 2019; 117:1172-1186. [PMID: 31814104 PMCID: PMC7078918 DOI: 10.1002/bit.27247] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
Large scale biopharmaceutical production of biologics relies on the overexpression of foreign proteins by cells cultivated in stirred tank bioreactors. It is well recognized and documented fact that protein overexpression may impact host cell metabolism and that factors associated with large scale culture, such as the hydrodynamic forces and inhomogeneities within the bioreactors, may promote cellular stress. The metabolic adaptations required to support the high‐level expression of recombinant proteins include increased energy production and improved secretory capacity, which, in turn, can lead to a rise of reactive oxygen species (ROS) generated through the respiration metabolism and the interaction with media components. Oxidative stress is defined as the imbalance between the production of free radicals and the antioxidant response within the cells. Accumulation of intracellular ROS can interfere with the cellular activities and exert cytotoxic effects via the alternation of cellular components. In this context, strategies aiming to alleviate oxidative stress generated during the culture have been developed to improve cell growth, productivity, and reduce product microheterogeneity. In this review, we present a summary of the different approaches used to decrease the oxidative stress in Chinese hamster ovary cells and highlight media development and cell engineering as the main pathways through which ROS levels may be kept under control.
Collapse
Affiliation(s)
- Valentine Chevallier
- Upstream Process Sciences, Biotech Sciences, UCB Nordic A/S, Copenhagen, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|