1
|
Barrett J, Leysen S, Galmiche C, Al-Mossawi H, Bowness P, Edwards TE, Lawson AD. Chimeric antigens displaying GPR65 extracellular loops on a soluble scaffold enabled the discovery of antibodies, which recognized native receptor. Bioengineered 2024; 15:2299522. [PMID: 38184821 PMCID: PMC10773626 DOI: 10.1080/21655979.2023.2299522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024] Open
Abstract
GPR65 is a proton-sensing G-protein coupled receptor associated with multiple immune-mediated inflammatory diseases, whose function is relatively poorly understood. With few reagents commercially available to probe the biology of receptor, generation of an anti-GPR65 monoclonal antibody was desired. Using soluble chimeric scaffolds, such as ApoE3, displaying the extracellular loops of GPR65, together with established phage display technology, native GPR65 loop-specific antibodies were identified. Phage-derived loop-binding antibodies recognized the wild-type native receptor to which they had not previously been exposed, generating confidence in the use of chimeric soluble proteins to act as efficient surrogates for membrane protein extracellular loop antigens. This technique provides promise for the rational design of chimeric antigens in facilitating the discovery of specific antibodies to GPCRs.
Collapse
Affiliation(s)
- Janine Barrett
- UK Research Department, UCB Pharma, Slough, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | | | - Hussein Al-Mossawi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
2
|
Pretorius E. Platelets in HIV: A Guardian of Host Defence or Transient Reservoir of the Virus? Front Immunol 2021; 12:649465. [PMID: 33968041 PMCID: PMC8102774 DOI: 10.3389/fimmu.2021.649465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 01/28/2023] Open
Abstract
The immune and inflammatory responses of platelets to human immunodeficiency virus 1 (HIV-1) and its envelope proteins are of great significance to both the treatment of the infection, and to the comorbidities related to systemic inflammation. Platelets can interact with the HIV-1 virus itself, or with viral membrane proteins, or with dysregulated inflammatory molecules in circulation, ensuing from HIV-1 infection. Platelets can facilitate the inhibition of HIV-1 infection via endogenously-produced inhibitors of HIV-1 replication, or the virus can temporarily hide from the immune system inside platelets, whereby platelets act as HIV-1 reservoirs. Platelets are therefore both guardians of the host defence system, and transient reservoirs of the virus. Such reservoirs may be of particular significance during combination antiretroviral therapy (cART) interruption, as it may drive viral persistence, and result in significant implications for treatment. Both HIV-1 envelope proteins and circulating inflammatory molecules can also initiate platelet complex formation with immune cells and erythrocytes. Complex formation cause platelet hypercoagulation and may lead to an increased thrombotic risk. Ultimately, HIV-1 infection can initiate platelet depletion and thrombocytopenia. Because of their relatively short lifespan, platelets are important signalling entities, and could be targeted more directly during HIV-1 infection and cART.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Shan L, Cook KM, Haskins N, Omar B, Jiang Y, Garcia A, Koksal A, Oganesyan V, Rosenthal K, Wu H, Dall'Acqua WF, Damschroder MM. Long-acting antibody ligand mimetics for HER4-selective agonism. Sci Rep 2020; 10:17257. [PMID: 33057063 PMCID: PMC7566517 DOI: 10.1038/s41598-020-74176-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/21/2020] [Indexed: 12/03/2022] Open
Abstract
Neuregulin protein 1 (NRG1) is a large (> 60–amino-acid) natural peptide ligand for the ErbB protein family members HER3 and HER4. We developed an agonistic antibody modality, termed antibody ligand mimetics (ALM), by incorporating complex ligand agonists such as NRG1 into an antibody scaffold. We optimized the linker and ligand length to achieve native ligand activity in HEK293 cells and cardiomyocytes derived from induced pluripotent stem cells (iPSCs) and used a monomeric Fc-ligand fusion platform to steer the ligand specificity toward HER4-dominant agonism. With the help of selectivity engineering, these enhanced ALM molecules can provide an antibody scaffold with increased receptor specificity and the potential to greatly improve the pharmacokinetics, stability, and downstream developability profiles from the natural ligand approach. This ligand mimetic design and optimization approach can be expanded to apply to other cardiovascular disease targets and emerging therapeutic areas, providing differentiated drug molecules with increased specificity and extended half-life.
Collapse
Affiliation(s)
- Lu Shan
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, USA. .,Biotherapeutics, Denali Therapeutics, 161 Oyster Point Blvd, South San Francisco, CA, 94070, USA.
| | - Kimberly M Cook
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, USA
| | - Nantaporn Haskins
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, USA
| | - Bilal Omar
- Early Oncology, AstraZeneca, Gaithersburg, USA
| | - Yu Jiang
- Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Gaithersburg, USA
| | - Andrew Garcia
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, USA
| | - Adem Koksal
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, USA.,Antibody Discovery and Protein Engineering, NextCure, 9000 Virginia Manor Road, Suite 200, Beltsville, MD, 20705, USA
| | - Vaheh Oganesyan
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, USA
| | - Kim Rosenthal
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, USA
| | - Herren Wu
- Antibody Discovery and Protein Engineering, AstraZeneca, Gaithersburg, USA
| | | | | |
Collapse
|