1
|
Malarvannan M, Ravichandiran V, Paul D. Advances in analytical technologies for emerging drug modalities and their separation challenges in LC-MS systems. J Chromatogr A 2024; 1732:465226. [PMID: 39111181 DOI: 10.1016/j.chroma.2024.465226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The last few years have seen a rise in the identification and development of bio-therapeutics through the use of cutting-edge delivery methods or bio-formulations, which has created bio-analytical difficulties. Every year, new bio-pharmaceutical product innovations come out, but the analytical development of these products is challenging. Quantifying the products and components of conjugated molecular structures is essential for preclinical and clinical research in order to guide therapeutic development, given their intrinsic complexity. Furthermore, a significant amount of information is needed for the measurement of these unique modalities by LC-MS techniques. Numerous LC-MS based methods have been developed, including AEX-HPLC-MS, RP-IP-LCMS, HILIC-MS, LCHRMS, Microflow-LC-MS, ASMS, Hybrid LBA/LC-MS, and more. However, these methods continue to face problems, prompting the development of alternative approaches. Therefore, developing bio-molecules that are this complicated and, low in concentration requires a skilled LC-MS based approach and knowledgeable personnel. This review covers general novel modalities classifications, sample preparation techniques, current status and bio-analytical strategies for analyzing various novel modalities, including gene bio-therapeutics, oligonucleotides, antibody-drug conjugates, monoclonal antibodies and PROTACs. It also covers how these strategies have been used in the past and how they are being used now to address challenges in the development of LC-MS based methods, as well as improvement strategies, current advancements and recent developed methods. We additionally covered on the benefits and drawbacks of different LC-MS based techniques for the examination of bio-pharmaceutical products and the future perspectives.
Collapse
Affiliation(s)
- M Malarvannan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India
| | - V Ravichandiran
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India
| | - David Paul
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India.
| |
Collapse
|
2
|
Révész Á, Hevér H, Steckel A, Schlosser G, Szabó D, Vékey K, Drahos L. Collision energies: Optimization strategies for bottom-up proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:1261-1299. [PMID: 34859467 DOI: 10.1002/mas.21763] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 06/07/2023]
Abstract
Mass-spectrometry coupled to liquid chromatography is an indispensable tool in the field of proteomics. In the last decades, more and more complex and diverse biochemical and biomedical questions have arisen. Problems to be solved involve protein identification, quantitative analysis, screening of low abundance modifications, handling matrix effect, and concentrations differing by orders of magnitude. This led the development of more tailored protocols and problem centered proteomics workflows, including advanced choice of experimental parameters. In the most widespread bottom-up approach, the choice of collision energy in tandem mass spectrometric experiments has outstanding role. This review presents the collision energy optimization strategies in the field of proteomics which can help fully exploit the potential of MS based proteomics techniques. A systematic collection of use case studies is then presented to serve as a starting point for related further scientific work. Finally, this article discusses the issue of comparing results from different studies or obtained on different instruments, and it gives some hints on methodology transfer between laboratories based on measurement of reference species.
Collapse
Affiliation(s)
- Ágnes Révész
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Helga Hevér
- Chemical Works of Gedeon Richter Plc, Budapest, Hungary
| | - Arnold Steckel
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Szabó
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
3
|
Čaval T, Hecht ES, Tang W, Uy‐Gomez M, Nichols A, Kil YJ, Sandoval W, Bern M, Heck AJR. The lysosomal endopeptidases Cathepsin D and L are selective and effective proteases for the middle-down characterization of antibodies. FEBS J 2021; 288:5389-5405. [PMID: 33713388 PMCID: PMC8518856 DOI: 10.1111/febs.15813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/23/2021] [Accepted: 03/08/2021] [Indexed: 01/18/2023]
Abstract
Mass spectrometry is gaining momentum as a method of choice to de novo sequence antibodies (Abs). Adequate sequence coverage of the hypervariable regions remains one of the toughest identification challenges by either bottom-up or top-down workflows. Methods that efficiently generate mid-size Ab fragments would further facilitate top-down MS and decrease data complexity. Here, we explore the proteases Cathepsins L and D for forming protein fragments from three IgG1s, one IgG2, and one bispecific, knob-and-hole IgG1. We demonstrate that high-resolution native MS provides a sensitive method for the detection of clipping sites. Both Cathepsins produced multiple, albeit specific cleavages. The Abs were cleaved immediately after the CDR3 region, yielding ~ 12 kDa fragments, that is, ideal sequencing-sized. Cathepsin D, but not Cathepsin L, also cleaved directly below the Ab hinge, releasing the F(ab')2. When constrained by the different disulfide bonds found in the IgG2 subtype or by the tertiary structure of the hole-containing bispecific IgG1, the hinge region digest product was not produced. The Cathepsin L and Cathepsin D clipping motifs were related to sequences of neutral amino acids and the tertiary structure of the Ab. A single pot (L + D) digestion protocol was optimized to achieve 100% efficiency. Nine protein fragments, corresponding to the VL, VH, CL, CH1, CH2, CH3, CL + CH1, and F(ab')2, constituted ~ 70% of the summed intensities of all deconvolved proteolytic products. Cleavage sites were confirmed by the Edman degradation and validated with top-down sequencing. The described work offers a complementary method for middle-down analysis that may be applied to top-down Ab sequencing. ENZYMES: Cathepsin L-EC 3.4.22.15, Cathepsin D-EC 3.4.23.5.
Collapse
Affiliation(s)
- Tomislav Čaval
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityThe Netherlands
- Netherlands Proteomics CentreUtrechtThe Netherlands
| | - Elizabeth Sara Hecht
- Department of Microchemistry, Proteomics, and Lipidomics & Next Generation SequencingGenentech, Inc.South San FranciscoCAUSA
| | | | - Maelia Uy‐Gomez
- Department of Microchemistry, Proteomics, and Lipidomics & Next Generation SequencingGenentech, Inc.South San FranciscoCAUSA
| | | | | | - Wendy Sandoval
- Department of Microchemistry, Proteomics, and Lipidomics & Next Generation SequencingGenentech, Inc.South San FranciscoCAUSA
| | | | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityThe Netherlands
- Netherlands Proteomics CentreUtrechtThe Netherlands
| |
Collapse
|
4
|
Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody. Biochem J 2021; 478:99-120. [PMID: 33284343 PMCID: PMC7813475 DOI: 10.1042/bcj20200674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022]
Abstract
A comparative canine–human therapeutics model is being developed in B-cell lymphoma through the generation of a hybridoma cell that produces a murine monoclonal antibody specific for canine CD20. The hybridoma cell produces two light chains, light chain-3, and light chain-7. However, the contribution of either light chain to the authentic full-length hybridoma derived IgG is undefined. Mass spectrometry was used to identify only one of the two light chains, light chain-7, as predominating in the full-length IgG. Gene synthesis created a recombinant murine–canine chimeric monoclonal antibody expressing light chain-7 that reconstituted the IgG binding to CD20. Using light chain-7 as a reference sequence, hydrogen deuterium exchange mass spectrometry was used to identify the dominant CDR region implicated in CD20 antigen binding. Early in the deuteration reaction, the CD20 antigen suppressed deuteration at CDR3 (VH). In later time points, deuterium suppression occurred at CDR2 (VH) and CDR2 (VL), with the maintenance of the CDR3 (VH) interaction. These data suggest that CDR3 (VH) functions as the dominant antigen docking motif and that antibody aggregation is induced at later time points after antigen binding. These approaches define a methodology for fine mapping of CDR contacts using nested enzymatic reactions and hydrogen deuterium exchange mass spectrometry. These data support the further development of an engineered, synthetic canine–murine monoclonal antibody, focused on CDR3 (VH), for use as a canine lymphoma therapeutic that mimics the human–murine chimeric anti-CD20 antibody Rituximab.
Collapse
|
5
|
Mao Y, Kleinberg A, Li N. Isobaric Tandem Mass Tag Multiplexed Post-Translational Modification Quantitation of Biopharmaceuticals by Targeted High-Resolution Mass Spectrometry. Anal Chem 2020; 92:9682-9690. [PMID: 32559367 DOI: 10.1021/acs.analchem.0c00999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide mapping coupled with liquid chromatography-mass spectrometry (LC-MS) has become an essential analytical technique to quantify the quality attributes (e.g., post-translational modifications [PTMs]) of monoclonal antibodies (mAbs) during drug development. However, the traditional label-free approach for relative quantitation of PTMs requires a great amount of instrument time for LC-MS data acquisition of individual digested samples, which limits the efficiency of peptide mapping when there is an increasing demand for protein characterization. Here, we developed a tandem mass tag (TMT)-based approach in combination with targeted mass spectrometry for multiplexed site-specific PTM quantitation of monoclonal antibodies to overcome this limitation. This approach enables the simultaneous quantitation of quality attributes (e.g., PTMs) for multiple samples in a single LC-MS run. By adjusting higher-energy collision dissociation (HCD) normalized collisional energies (NCEs) from 35 to 90, different types of PTMs were quantified with percentages comparable to those obtained using the conventional approach. The TMT overlabeling on the off-target amino acid residues serine, threonine, and tyrosine was observed to pose a challenge for this targeted MS/MS-based PTM quantitation. However, we inhibited this off-target overlabeling by adding a small-molecule additive during the TMT labeling as a decoy reagent to deplete the excess amount of TMT reagent. The PTM quantitative performance of this approach demonstrated high sensitivity and reproducibility of PTM quantitation with levels as low as 1.0%. Finally, this approach has been utilized to quantify the PTMs for forced degradation samples, comparability samples, and trisulfide standards of monoclonal antibodies.
Collapse
Affiliation(s)
- Yuan Mao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Andrew Kleinberg
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| |
Collapse
|
6
|
Vecchi MM, Xiao Y, Wen D. Identification and Sequencing of N-Terminal Peptides in Proteins by LC-Fluorescence-MS/MS: An Approach to Replacement of the Edman Degradation. Anal Chem 2019; 91:13591-13600. [DOI: 10.1021/acs.analchem.9b02754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Malgorzata Monika Vecchi
- Analytical Biochemistry, Biologics Drug Discovery Department, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yongsheng Xiao
- Analytical Biochemistry, Biologics Drug Discovery Department, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Dingyi Wen
- Analytical Biochemistry, Biologics Drug Discovery Department, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|