1
|
Veerasubramanian PK, Wynn TA, Quan J, Karlsson FJ. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. J Exp Med 2024; 221:e20240806. [PMID: 39297883 PMCID: PMC11413425 DOI: 10.1084/jem.20240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulated signaling from TNF and TNFR proteins is implicated in several immune-mediated inflammatory diseases (IMIDs). This review centers around seven IMIDs (rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, ulcerative colitis, psoriasis, atopic dermatitis, and asthma) with substantial unmet medical needs and sheds light on the signaling mechanisms, disease relevance, and evolving drug development activities for five TNF/TNFR signaling axes that garner substantial drug development interest in these focus conditions. The review also explores the current landscape of therapeutics, emphasizing the limitations of the approved biologics, and the opportunities presented by small-molecule inhibitors and combination antagonists of TNF/TNFR signaling.
Collapse
Affiliation(s)
| | - Thomas A. Wynn
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | - Jie Quan
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | | |
Collapse
|
2
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
3
|
Wang S, Li Y, Mei J, Wu S, Ying G, Yi Y. Precision engineering of antibodies: A review of modification and design in the Fab region. Int J Biol Macromol 2024; 275:133730. [PMID: 38986973 DOI: 10.1016/j.ijbiomac.2024.133730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The binding of functional groups to antibodies is crucial for disease treatment, diagnosis, and basic scientific research. Traditionally, antibody modifications have focused on the Fc region to maintain antigen-antibody binding activity. However, such modifications may impact critical antibody functions, including immune cell surface receptor activation, cytokine release, and other immune responses. In recent years, modifications targeting the antigen-binding fragment (Fab) region have garnered increasing attention. Precise modifications of the Fab region not only maximize the retention of antigen-antibody binding capacity but also enhance numerous physicochemical properties of antibodies. This paper reviews the chemical, biological, biochemical, and computer-assisted methods for modifying the Fab region of antibodies, discussing their advantages, limitations, recent advances, and future trends.
Collapse
Affiliation(s)
- Sa Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yao Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jianfeng Mei
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Shujiang Wu
- Hangzhou Biotest Biotech Co., Ltd, Hangzhou 310014, China.
| | - Guoqing Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu Yi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Croote D, Wong JJW, Creeks P, Aruva V, Landers JJ, Kwok M, Jama Z, Hamilton RG, Santos AF, O'Konek JJ, Ferrini R, Thomas GR, Lowman HB. Preclinical efficacy of peanut-specific IgG4 antibody therapeutic IGNX001. J Allergy Clin Immunol 2024:S0091-6749(24)00743-7. [PMID: 39069172 DOI: 10.1016/j.jaci.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Existing therapeutic strategies are challenged by long times to achieve effect and often require frequent administration. Peanut-allergic individuals would benefit from a therapeutic that provides rapid protection against accidental exposure within days of administration while carrying little risk of adverse reactions. OBJECTIVE Guided by the repertoire of human IgE mAbs from allergic individuals, we sought to develop a treatment approach leveraging the known protective effects of allergen-specific IgG4 antibodies. METHODS We applied our single-cell RNA-sequencing SEQ SIFTER platform (IgGenix, Inc, South San Francisco, Calif) to whole blood samples from peanut-allergic individuals to discover IgE mAbs. These were then class-switched by replacing the IgE constant region with IgG4 while retaining the allergen-specific variable regions. In vitro mast cell activation tests, basophil activation tests, ELISAs, and an in vivo peanut allergy mouse model were used to evaluate the specificity, affinity, and activity of these recombinant IgG4 mAbs. RESULTS We determined that human peanut-specific IgE mAbs predominantly target immunodominant epitopes on Ara h 2 and Ara h 6 and that recombinant IgG4 mAbs effectively block these epitopes. IGNX001, a mixture of 2 such high-affinity IgG4 mAbs, provided robust protection against peanut-mediated mast cell activation in vitro as well as against anaphylaxis upon intragastric peanut challenge in a peanut allergy mouse model. CONCLUSIONS We developed a peanut-specific IgG4 antibody therapeutic with convincing preclinical efficacy starting from a large repertoire of human IgE mAbs from demographically and geographically diverse individuals. These results warrant further clinical investigation of IGNX001 and underscore the opportunity for the application of this therapeutic development strategy in other food and environmental allergies.
Collapse
Affiliation(s)
| | | | | | - Venu Aruva
- IgGenix, Inc, South San Francisco, Calif
| | - Jeffrey J Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Matthew Kwok
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Zainab Jama
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Robert G Hamilton
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Alexandra F Santos
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | | | | | | |
Collapse
|
5
|
Wang S, Zhang W, Yang B, Zhang X, Fang J, Rui H, Chen Z, Gu J, Chen Z, Xu J. A case study of a bispecific antibody manufacturability assessment and optimization during discovery stage and its implications. Antib Ther 2024; 7:189-198. [PMID: 39036070 PMCID: PMC11259756 DOI: 10.1093/abt/tbae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/23/2024] Open
Abstract
The manufacturability assessment and optimization of bispecific antibodies (bsAbs) during the discovery stage are crucial for the success of the drug development process, impacting the speed and cost of advancing such therapeutics to the Investigational New Drug (IND) stage and ultimately to the market. The complexity of bsAbs creates challenges in employing effective evaluation methods to detect developability risks in early discovery stage, and poses difficulties in identifying the root causes and implementing subsequent engineering solutions. This study presents a case of engineering a bsAb that displayed a normal solution appearance during the discovery phase but underwent significant precipitation when subjected to agitation stress during 15 L Chemistry, Manufacturing, and Control (CMC) production Leveraging analytical tools, structural analysis, in silico prediction, and wet-lab validations, the key molecular origins responsible for the observed precipitation were identified and addressed. Sequence engineering to reduce protein surface hydrophobicity and enhance conformational stability proved effective in resolving agitation-induced aggregation. The refined bsAb sequences enabled successful mass production in CMC department. The findings of this case study contribute to the understanding of the fundamental mechanism of agitation-induced aggregation and offer a potential protein engineering procedure for addressing similar issues in bsAb. Furthermore, this case study emphasizes the significance of a close partnership between Discovery and CMC teams. Integrating CMC's rigorous evaluation methods with Discovery's engineering capability can facilitate a streamlined development process for bsAb molecules.
Collapse
Affiliation(s)
- Shuang Wang
- Biologics Innovation Discovery, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Weijie Zhang
- Biologics Innovation Discovery, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Baotian Yang
- Biologics Innovation Discovery, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Xudong Zhang
- Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Jing Fang
- Biologics Innovation Discovery, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Haopeng Rui
- D3 Bio (Wuxi) Co., Ltd., 1101, 11/F, Building 1, No.6, Lane 38, Yuanshen Road, Pudong, Shanghai, 200120, China
| | - Zhijian Chen
- D3 Bio (Wuxi) Co., Ltd., 1101, 11/F, Building 1, No.6, Lane 38, Yuanshen Road, Pudong, Shanghai, 200120, China
| | - Jijie Gu
- Biologics Innovation Discovery, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Zhiqiang Chen
- D3 Bio (Wuxi) Co., Ltd., 1101, 11/F, Building 1, No.6, Lane 38, Yuanshen Road, Pudong, Shanghai, 200120, China
| | - Jianqing Xu
- Biologics Innovation Discovery, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| |
Collapse
|
6
|
Peng Y, Zhang X, Tang Y, He S, Rao G, Chen Q, Xue Y, Jin H, Liu S, Zhou Z, Xiang Y. Role of autoreactive Tc17 cells in the pathogenesis of experimental autoimmune encephalomyelitis. NEUROPROTECTION 2024; 2:49-59. [DOI: 10.1002/nep3.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 07/04/2024]
Abstract
AbstractBackgroundThe pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE—an animal model of MS) is primarily mediated by T cells. However, recent studies have only focused on interleukin (IL)‐17‐secreting CD4+ T‐helper cells, also known as Th17 cells. This study aimed to compare Th17 cells and IL‐17‐secreting CD8+ T‐cytotoxic cells (Tc17) in the context of MS/EAE.MethodsFemale C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein peptides 35–55 (MOG35–55), pertussis toxin, and complete Freund's adjuvant to establish the EAE animal model. T cells were isolated from the spleen (12–14 days postimmunization). CD4+ and CD8+ T cells were purified using isolation kit and then differentiated into Th17 and Tc17, respectively, using MOG35–55 and IL‐23. The secretion levels of interferon‐γ (IFN‐γ) and IL‐17 were measured via enzyme‐linked immunosorbent assay using cultured CD4+ and CD8+ T cell supernatants. The pathogenicity of Tc17 and Th17 cells was assessed through adoptive transfer (tEAE), with the clinical course assessed using an EAE score (0–5). Hematoxylin and eosin as well as Luxol fast blue staining were used to examine the spinal cord. Purified CD8+ CD3+ and CD4+ CD3+ cells differentiated into Tc17 and Th17 cells, respectively, were stimulated with MOG35–55 peptide for proliferation assays.ResultsThe results showed that Tc17 cells (15,951 ± 1985 vs. 55,709 ± 4196 cpm; p < 0.050) exhibited a weaker response to highest dose (20 μg/mL) MOG35–55 than Th17 cells. However, this response was not dependent on Th17 cells. After the 48 h stimulation, at the highest dose (20 μg/mL) of MOG35–55. Tc17 cells secreted lower levels of IFN‐γ (280.00 ± 15.00 vs. 556.67 ± 15.28 pg/mL, p < 0.050) and IL‐17 (102.67 ± 5.86 pg/mL vs. 288.33 ± 12.58 pg/mL; p < 0.050) than Th17 cells. Similar patterns were observed for IFN‐γ secretion at 96 and 144 h. Furthermore, Tc17 cell‐induced tEAE mice exhibited similar EAE scores to Th17 cell‐induced tEAE mice and also showed similar inflammation and demyelination.ConclusionThe degree of pathogenicity of Tc17 cells in EAE is lower than that of Th17 cells. Future investigation on different immune cells and EAE models is warranted to determine the mechanisms underlying MS.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Xiuli Zhang
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| | - Yandan Tang
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Shunqing He
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Guilan Rao
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Quan Chen
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Yahui Xue
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Hong Jin
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Shu Liu
- Department of Neurology Affiliated First Hospital of Hunan Traditional Chinese Medical College Zhuzhou Hunan China
- Department of Neurology The Third Affiliated Hospital of Hunan University of Chinese Medicine Zhuzhou Hunan China
| | - Ziyang Zhou
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| | - Yun Xiang
- Science and Technology Innovation Center Hunan University of Chinese Medicine Changsha Hunan China
| |
Collapse
|
7
|
Zhang N, Zheng N, Luo D, Lin J, Lin D, Lu Y, Lai W, Bian Y, Wang H, Ye J, Yang J, Liu J, Que W, Chen X. A novel single domain bispecific antibody targeting VEGF and TNF-α ameliorates rheumatoid arthritis. Int Immunopharmacol 2024; 126:111240. [PMID: 37992444 DOI: 10.1016/j.intimp.2023.111240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Anti-TNF-α therapy fails in 30% of patients, where TNF-α may not be the key causative factor in these patients. We developed a bispecific single-domain antibody block TNF-α and VEGF (V5-3).The experiments showed that V5-3 effectively activated proliferation and migration of RA-FLS and HUVEC, tube-forming role of HUVEC, and expression of inflammatory factors in vitro. Besides, the experiments indicated that the anti-RA activity of V5-3 was superior to Anbainuo in vivo. Application of V5-3 reduced the expression of inflammatory factors, extent of synovial inflammation and angiogenesis and attenuated the severity of autoimmune arthritis in collagen-induced arthritis (CIA) mice. Mechanistically, V5-3 suppressed p65, AKT and VEGFR2 phosphorylation, as well as production of TNF-α and VEGF in joint tissues. These results demonstrated that V5-3 displayed a superior effect of anti-RA, may be a new therapy to overcome the limitations of anti-TNF-α monoclonal antibody.
Collapse
Affiliation(s)
- Nanwen Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, Fujian, China
| | - Ningning Zheng
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China; Putian Lanhai Nuclear Medicine Research Center, Putian 351100, Fujian,China
| | - Dunxiong Luo
- The Department of Physical Education, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Juan Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Duoduo Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yongkang Lu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Weipeng Lai
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yize Bian
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - He Wang
- The School of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Jian Ye
- The Department of Orthopedics, Nanping First Hospital Affiliated with Fujian Medical University, Fujian Medical University, Nanping 353000, Fujian, China; Third Clinical Medical College, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Juhua Yang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, Fujian, China.
| | - Jiaan Liu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China.
| | - Wenzhong Que
- Department of Rheumatology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, Fujian, China.
| | - Xiaole Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, Fujian, China.
| |
Collapse
|
8
|
Amash A, Volkers G, Farber P, Griffin D, Davison KS, Goodman A, Tonikian R, Yamniuk A, Barnhart B, Jacobs T. Developability considerations for bispecific and multispecific antibodies. MAbs 2024; 16:2394229. [PMID: 39189686 DOI: 10.1080/19420862.2024.2394229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Bispecific antibodies (bsAb) and multispecific antibodies (msAb) encompass a diverse variety of formats that can concurrently bind multiple epitopes, unlocking mechanisms to address previously difficult-to-treat or incurable diseases. Early assessment of candidate developability enables demotion of antibodies with low potential and promotion of the most promising candidates for further development. Protein-based therapies have a stringent set of developability requirements in order to be competitive (e.g. high-concentration formulation, and long half-life) and their assessment requires a robust toolkit of methods, few of which are validated for interrogating bsAbs/msAbs. Important considerations when assessing the developability of bsAbs/msAbs include their molecular format, likelihood for immunogenicity, specificity, stability, and potential for high-volume production. Here, we summarize the critical aspects of developability assessment, and provide guidance on how to develop a comprehensive plan tailored to a given bsAb/msAb.
Collapse
Affiliation(s)
- Alaa Amash
- AbCellera Biologics Inc, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | - Tim Jacobs
- AbCellera Biologics Inc, Vancouver, BC, Canada
| |
Collapse
|
9
|
Huang H. Immunotherapeutic approaches for systemic lupus erythematosus: early overview and future potential. MEDICAL REVIEW (2021) 2023; 3:452-464. [PMID: 38282801 PMCID: PMC10808868 DOI: 10.1515/mr-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/16/2023] [Indexed: 01/30/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Current SLE therapies include immunosuppressants, antimalarial drugs, non-steroidal anti-inflammatory drugs (NSAIDs), and corticosteroids, but these treatments can cause substantial toxicities to organs and may not be effective for all patients. In recent years, significant progress has been made in the treatment of SLE using immunotherapy, including Benlysta and Saphnelo. These advances in immunotherapy hold promise for SLE patients, providing new therapeutic options that may offer better clinical benefit and effectiveness. Simultaneously, several new biological therapies focusing on cytokines, peptides, targeted antibodies, and cell-based approaches are under clinical evaluation and have shown immense potential for the treatment of SLE. However, the complexity of SLE immunopathogenesis and disease heterogeneity present significant challenges in the development of effective immunological therapies. This review aims to discuss past experiences and understanding of diverse immunological targeting therapies for SLE and highlight future perspectives for the development of novel immunological therapies.
Collapse
Affiliation(s)
- Hongpeng Huang
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
10
|
Thorlacius GE, Björk A, Wahren-Herlenius M. Genetics and epigenetics of primary Sjögren syndrome: implications for future therapies. Nat Rev Rheumatol 2023; 19:288-306. [PMID: 36914790 PMCID: PMC10010657 DOI: 10.1038/s41584-023-00932-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
In primary Sjögren syndrome (pSS), chronic inflammation of exocrine glands results in tissue destruction and sicca symptoms, primarily of the mouth and eyes. Fatigue, arthralgia and myalgia are also common symptoms, whereas extraglandular manifestations that involve the respiratory, nervous and vascular systems occur in a subset of patients. The disease predominantly affects women, with an estimated female to male ratio of 14 to 1. The aetiology of pSS, however, remains incompletely understood, and effective treatment is lacking. Large-scale genetic and epigenetic investigations have revealed associations between pSS and genes in both innate and adaptive immune pathways. The genetic variants mediate context-dependent effects, and both sex and environmental factors can influence the outcome. As such, genetic and epigenetic studies can provide insight into the dysregulated molecular mechanisms, which in turn might reveal new therapeutic possibilities. This Review discusses the genetic and epigenetic features that have been robustly connected with pSS, putting them into the context of cellular function, carrier sex and environmental challenges. In all, the observations point to several novel opportunities for early detection, treatment development and the pathway towards personalized medicine.
Collapse
Affiliation(s)
- Gudny Ella Thorlacius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Albin Björk
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
11
|
Mukherjee I, Singh S, Karmakar A, Kashyap N, Mridha AR, Sharma JB, Luthra K, Sharma RS, Biswas S, Dhar R, Karmakar S. New immune horizons in therapeutics and diagnostic approaches to Preeclampsia. Am J Reprod Immunol 2023; 89:e13670. [PMID: 36565013 DOI: 10.1111/aji.13670] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 11/02/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are one of the commonest maladies, affecting 5%-10% of pregnancies worldwide. The American College of Obstetricians and Gynecologists (ACOG) identifies four categories of HDP, namely gestational hypertension (GH), Preeclampsia (PE), chronic hypertension (CH), and CH with superimposed PE. PE is a multisystem, heterogeneous disorder that encompasses 2%-8% of all pregnancy-related complications, contributing to about 9% to 26% of maternal deaths in low-income countries and 16% in high-income countries. These translate to 50 000 maternal deaths and over 500 000 fetal deaths worldwide, therefore demanding high priority in understanding clinical presentation, screening, diagnostic criteria, and effective management. PE is accompanied by uteroplacental insufficiency leading to vascular and metabolic changes, vasoconstriction, and end-organ ischemia. PE is diagnosed after 20 weeks of pregnancy in women who were previously normotensive or hypertensive. Besides shallow trophoblast invasion and inadequate remodeling of uterine arteries, dysregulation of the nonimmune system has been the focal point in PE. This results from aberrant immune system activation and imbalanced differentiation of T cells. Further, a failure of tolerance toward the semi-allogenic fetus results due to altered distribution of Tregs such as CD4+FoxP3+ or CD4+CD25+CD127(low) FoxP3+ cells, thereby creating a cytotoxic environment by suboptimal production of immunosuppressive cytokines like IL-10, IL-4, and IL-13. Also, intracellular production of complement protein C5a may result in decreased FoxP3+ regulatory T cells. With immune system dysfunction as a major driver in PE pathogenesis, it is logical that therapeutic targeting of components of the immune system with pharmacologic agents like anti-inflammatory and immune-modulating molecules are either being used or under clinical trial. Cholesterol synthesis inhibitors like Pravastatin may improve placental perfusion in PE, while Eculizumab (monoclonal antibody inhibiting C5) and small molecular inhibitor of C5a, Zilucoplan are under investigation. Monoclonal antibody against IL-17(Secukinumab) has been proposed to alter the Th imbalance in PE. Autologous Treg therapy and immune checkpoint inhibitors like anti-CTLA-4 are emerging as new candidates in immune horizons for PE management in the future.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Abhibrato Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Neha Kashyap
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Asit Ranjan Mridha
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Jai Bhagwan Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Radhey Shyam Sharma
- Ex-Head and Scientist G, Indian Council of Medical Research, New Delhi, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Noida, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Jönsson M, Scheffel J, Larsson E, Möller M, Rossi G, Lundqvist M, Rockberg J, Uhlén M, Tegel H, Kanje S, Hober S. CaRA - A multi-purpose phage display library for selection of calcium-regulated affinity proteins. N Biotechnol 2022; 72:159-167. [PMID: 36450334 DOI: 10.1016/j.nbt.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
Protein activity regulated by interactions with metal ions can be utilized for many different purposes, including biological therapies and bioprocessing, among others. Calcium ions are known to interact with the frequently occurring EF-hand motif, which can alter protein activity upon binding through an induced conformational change. The calcium-binding loop of the EF-hand motif has previously been introduced into a small protein domain derived from staphylococcal Protein A in a successful effort to render antibody binding dependent on calcium. Presented here, is a combinatorial library for calcium-regulated affinity, CaRA, based on this domain. CaRA is the first alternative scaffold library designed to achieve novel target specificities with metal-dependent binding. From this library, several calcium-dependent binders could be isolated through phage display campaigns towards a set of unrelated target proteins (IgE Cε3-Cε4, TNFα, IL23, scFv, tPA, PCSK9 and HER3) useful for distinct applications. Overall, these monomeric CaRA variants showed high stability and target affinities within the nanomolar range. They displayed considerably higher melting temperatures in the presence of 1 mM calcium compared to without calcium. Further, all discovered binders proved to be calcium-dependent, with the great majority showing complete lack of target binding in the absence of calcium. As demonstrated, the CaRA library is highly capable of providing protein-binding domains with calcium-dependent behavior, independent of the type of target protein. These binding domains could subsequently be of great use in gentle protein purification or as novel therapeutic modalities.
Collapse
Affiliation(s)
- Malin Jönsson
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Julia Scheffel
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Emma Larsson
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Marit Möller
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Gabriella Rossi
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Magnus Lundqvist
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Johan Rockberg
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Mathias Uhlén
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Hanna Tegel
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Sara Kanje
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden.
| |
Collapse
|
13
|
Zeng W, Zhou X, Yu S, Liu R, Quek CWN, Yu H, Tay RYK, Lin X, Feng Y. The Future of Targeted Treatment of Primary Sjögren's Syndrome: A Focus on Extra-Glandular Pathology. Int J Mol Sci 2022; 23:ijms232214135. [PMID: 36430611 PMCID: PMC9694487 DOI: 10.3390/ijms232214135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic, systemic autoimmune disease defined by exocrine gland hypofunction resulting in dry eyes and dry mouth. Despite increasing interest in biological therapies for pSS, achieving FDA-approval has been challenging due to numerous complications in the trials. The current literature lacks insight into a molecular-target-based approach to the development of biological therapies. This review focuses on novel research in newly defined drug targets and the latest clinical trials for pSS treatment. A literature search was conducted on ClinicalTrials.gov using the search term "Primary Sjögren's syndrome". Articles published in English between 2000 and 2021 were included. Our findings revealed potential targets for pSS treatment in clinical trials and the most recent advances in understanding the molecular mechanisms underlying the pathogenesis of pSS. A prominent gap in current trials is in overlooking the treatment of extraglandular symptoms such as fatigue, depression, and anxiety, which are present in most patients with pSS. Based on dryness and these symptom-directed therapies, emerging biological agents targeting inflammatory cytokines, signal pathways, and immune reaction have been studied and their efficacy and safety have been proven. Novel therapies may complement existing non-pharmacological methods of alleviating symptoms of pSS. Better grading systems that add extraglandular symptoms to gauge disease activity and severity should be created. The future of pSS therapies may lie in gene, stem-cell, and tissue-engineering therapies.
Collapse
Affiliation(s)
- Weizhen Zeng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Xinyao Zhou
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijng 100053, China
| | - Sulan Yu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ruihua Liu
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijng 100053, China
| | - Chrystie Wan Ning Quek
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Haozhe Yu
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Ryan Yong Kiat Tay
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: (X.L.); (Y.F.)
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (X.L.); (Y.F.)
| |
Collapse
|
14
|
Mahajan SP, Ruffolo JA, Frick R, Gray JJ. Hallucinating structure-conditioned antibody libraries for target-specific binders. Front Immunol 2022; 13:999034. [PMID: 36341416 PMCID: PMC9635398 DOI: 10.3389/fimmu.2022.999034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Antibodies are widely developed and used as therapeutics to treat cancer, infectious disease, and inflammation. During development, initial leads routinely undergo additional engineering to increase their target affinity. Experimental methods for affinity maturation are expensive, laborious, and time-consuming and rarely allow the efficient exploration of the relevant design space. Deep learning (DL) models are transforming the field of protein engineering and design. While several DL-based protein design methods have shown promise, the antibody design problem is distinct, and specialized models for antibody design are desirable. Inspired by hallucination frameworks that leverage accurate structure prediction DL models, we propose the FvHallucinator for designing antibody sequences, especially the CDR loops, conditioned on an antibody structure. Such a strategy generates targeted CDR libraries that retain the conformation of the binder and thereby the mode of binding to the epitope on the antigen. On a benchmark set of 60 antibodies, FvHallucinator generates sequences resembling natural CDRs and recapitulates perplexity of canonical CDR clusters. Furthermore, the FvHallucinator designs amino acid substitutions at the VH-VL interface that are enriched in human antibody repertoires and therapeutic antibodies. We propose a pipeline that screens FvHallucinator designs to obtain a library enriched in binders for an antigen of interest. We apply this pipeline to the CDR H3 of the Trastuzumab-HER2 complex to generate in silico designs predicted to improve upon the binding affinity and interfacial properties of the original antibody. Thus, the FvHallucinator pipeline enables generation of inexpensive, diverse, and targeted antibody libraries enriched in binders for antibody affinity maturation.
Collapse
Affiliation(s)
- Sai Pooja Mahajan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jeffrey A. Ruffolo
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Rahel Frick
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Madsen A, Mejias-Gomez O, Pedersen LE, Skovgaard K, Kristensen P, Goletz S. Immobilization-Free Binding and Affinity Characterization of Higher Order Bispecific Antibody Complexes Using Size-Based Microfluidics. Anal Chem 2022; 94:13652-13658. [PMID: 36166291 PMCID: PMC9558742 DOI: 10.1021/acs.analchem.2c02705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Simultaneous targeting of different antigens by bispecific antibodies (bsAbs) is permitting synergistic binding functionalities with high therapeutic potential, but is also rendering their analysis challenging. We introduce flow-induced dispersion analysis (FIDA) for the in-depth characterization of bsAbs with diverse molecular architectures and valencies under near-native conditions without potentially obstructive surface immobilization. Individual equilibrium dissociation constants are determined in solution, even in higher-order complexes with both antigens involved, hereby allowing the analysis of binding cooperativity and elucidation of a potential interference between the interactions. We further illustrate bispecific binding functionality as incremental increases in complex sizes when the bsAbs are exposed to one or two antigens. The possibility for comprehensive binding analysis with low material consumption and high matrix tolerability irrespective of molecular format and with little optimization renders FIDA a versatile tool for format selection and characterization of complex bi/multispecific protein therapeutics throughout the drug development and biomanufacturing pipeline.
Collapse
Affiliation(s)
- Andreas
V. Madsen
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads, Building 224, 2800 Kgs. Lyngby, Denmark
| | - Oscar Mejias-Gomez
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads, Building 224, 2800 Kgs. Lyngby, Denmark
| | - Lasse E. Pedersen
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads, Building 224, 2800 Kgs. Lyngby, Denmark
| | - Kerstin Skovgaard
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads, Building 224, 2800 Kgs. Lyngby, Denmark
| | - Peter Kristensen
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Steffen Goletz
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads, Building 224, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Structural and functional insights into a novel pre-clinical-stage antibody targeting IL-17A for treatment of autoimmune diseases. Int J Biol Macromol 2022; 202:529-538. [DOI: 10.1016/j.ijbiomac.2022.01.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023]
|
17
|
Retamozo S, Sisó-Almirall A, Flores-Chávez A, Ramos-Casals M, Brito-Zerón P. An update of targeted therapeutic options for primary Sjögren syndrome: current status and future development. Expert Opin Pharmacother 2021; 22:2359-2371. [PMID: 34323636 DOI: 10.1080/14656566.2021.1951224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Primary Sjögren syndrome (pSS) is a systemic autoimmune disease that may affect 3 in 1,000 people within the general population. The therapeutic scenario is complex, and no therapy has proved to be able to modify the natural course of the disease, nor to prevent the most severe systemic complications.Areas covered: Recently, the EULAR 2020 Recommendations for pSS have underlined the low level of evidence supporting efficacious therapeutic approaches, lacking a definition of specific treatment targets and being far from the 'disease modification' concept that is frequently used in other diseases. Herein, the authors review the status of current targeted therapies and provide the reader with their expert opinion.Expert opinion: The progress in discovering novel treatments for pSS seem to be focused on searching new biological therapies as highly-selective drugs that can be effective without the adverse effects related to the wide, nonspecific immunosuppression induced by the drugs currently used. Most likely, the more disruptive therapeutic approach in pSS that could be seen in a few years is the use of combination strategies targeting different etiopathogenic pathways.
Collapse
Affiliation(s)
- Soledad Retamozo
- Sjogren Syndrome Research Group (AGAUR), Department of Autoinmune Diseases, ICMiD, Hospital Clinic, Barcelona, Spain.,Rheumatology Department, Hospital Universitari Parc Taulí, Sabadell, Barcelona, Spain
| | - Antoni Sisó-Almirall
- Primary Care Centre Les Corts, Consorci d'Atenció Primària De Salut Barcelona Esquerra (CAPSBE), Barcelona, Spain.,Primary Healthcare Transversal Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Manuel Ramos-Casals
- Sjogren Syndrome Research Group (AGAUR), Department of Autoinmune Diseases, ICMiD, Hospital Clinic, Barcelona, Spain.,Laboratory of Autoimmune Diseases Josep Font, IDIBAPS-CELLEX, Barcelona, Spain
| | - Pilar Brito-Zerón
- Laboratory of Autoimmune Diseases Josep Font, IDIBAPS-CELLEX, Barcelona, Spain.,Autoimmune Diseases Unit, Department of Medicine, Hospital CIMA-Sanitas, Barcelona, Spain
| |
Collapse
|
18
|
Yu L, Huang N, Ge L, Sun H, Fu Y, Liu C, Wang J. Structural design of tetravalent T-cell engaging bispecific antibodies: improve developability by engineering disulfide bonds. J Biol Eng 2021; 15:18. [PMID: 34187511 PMCID: PMC8243740 DOI: 10.1186/s13036-021-00272-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/18/2021] [Indexed: 12/01/2022] Open
Abstract
Since the advances in protein engineering and manufacture, over the last 30 years, antibody-based immunotherapeutic has become a powerful strategy to treat diseases. The T-cell engaging bispecific antibody (BsAb) by combining the Fab binding domain of tumor antigens and Fab or single-chain variable fragments (scFvs) binding domain of CD3 molecules, could redirect cytotoxic T cells to kill tumor cells. The IgG-scFv format of BsAb is a dual bivalent and asymmetrical design, which adds the benefit of potent cytotoxicity and less complicated for manufacture but limits the stability and production. Here, we engineered a series of interchain disulfide bonds in the Fab region of IgG-svFv BsAbs and evaluated its biophysical and biological properties. We found that simultaneously replaced the position of VH44-VL100 and CH1126-CL121 residues with cysteine, to form two additional disulfide bonds, could markedly increase monomeric BsAb formation and yield. The thermostability and stability against aggregation and degradation also performed better than BsAbs without extra disulfide bonds introduction. Besides, the affinity of engineered BsAbs was maintained, and the h8B-BsAb antibody had a slight enhancement in an inhibitory effect on target cells.
Collapse
Affiliation(s)
- Lin Yu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), Chongqing University, No. 174 Shazheng Street, Shapingba District, 400044, Chongqing, China
- College of Bioengineering, Chongqing University, 400044, Chongqing, China
| | - Nan Huang
- Chongqing Academy of Animal Sciences, 402460, Chongqing, China
- Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, 402460, Chongqing, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, 402460, Chongqing, China
- Chongqing Engineering Technology Research Center for Medical Animal Resources Development and Application, 402460, Chongqing, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), Chongqing University, No. 174 Shazheng Street, Shapingba District, 400044, Chongqing, China
- College of Bioengineering, Chongqing University, 400044, Chongqing, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), Chongqing University, No. 174 Shazheng Street, Shapingba District, 400044, Chongqing, China
- College of Bioengineering, Chongqing University, 400044, Chongqing, China
| | - Chundong Liu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), Chongqing University, No. 174 Shazheng Street, Shapingba District, 400044, Chongqing, China.
- Qiuzhen College, Huzhou University, No.1 Xueshi Road, Wuxing District, 313000, Huzhou, China.
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), Chongqing University, No. 174 Shazheng Street, Shapingba District, 400044, Chongqing, China.
- College of Bioengineering, Chongqing University, 400044, Chongqing, China.
| |
Collapse
|
19
|
Al-Zaqri N, Pooventhiran T, Rao DJ, Alsalme A, Warad I, Thomas R. Structure, conformational dynamics, quantum mechanical studies and potential biological activity analysis of multiple sclerosis medicine ozanimod. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129685] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Root AR, Guntas G, Katragadda M, Apgar JR, Narula J, Chang CS, Hanscom S, McKenna M, Wade J, Meade C, Ma W, Guo Y, Liu Y, Duan W, Hendershot C, King AC, Zhang Y, Sousa E, Tam A, Benard S, Yang H, Kelleher K, Jin F, Piche-Nicholas N, Keating SE, Narciandi F, Lawrence-Henderson R, Arai M, Stochaj WR, Svenson K, Mosyak L, Lam K, Francis C, Marquette K, Wroblewska L, Zhu HL, Sheehan AD, LaVallie ER, D’Antona AM, Betts A, King L, Rosfjord E, Cunningham O, Lin L, Sapra P, Tchistiakova L, Mathur D, Bloom L. Discovery and optimization of a novel anti-GUCY2c x CD3 bispecific antibody for the treatment of solid tumors. MAbs 2021; 13:1850395. [PMID: 33459147 PMCID: PMC7833764 DOI: 10.1080/19420862.2020.1850395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
We report here the discovery and optimization of a novel T cell retargeting anti-GUCY2C x anti-CD3ε bispecific antibody for the treatment of solid tumors. Using a combination of hybridoma, phage display and rational design protein engineering, we have developed a fully humanized and manufacturable CD3 bispecific antibody that demonstrates favorable pharmacokinetic properties and potent in vivo efficacy. Anti-GUCY2C and anti-CD3ε antibodies derived from mouse hybridomas were first humanized into well-behaved human variable region frameworks with full retention of binding and T-cell mediated cytotoxic activity. To address potential manufacturability concerns, multiple approaches were taken in parallel to optimize and de-risk the two antibody variable regions. These approaches included structure-guided rational mutagenesis and phage display-based optimization, focusing on improving stability, reducing polyreactivity and self-association potential, removing chemical liabilities and proteolytic cleavage sites, and de-risking immunogenicity. Employing rapid library construction methods as well as automated phage display and high-throughput protein production workflows enabled efficient generation of an optimized bispecific antibody with desirable manufacturability properties, high stability, and low nonspecific binding. Proteolytic cleavage and deamidation in complementarity-determining regions were also successfully addressed. Collectively, these improvements translated to a molecule with potent single-agent in vivo efficacy in a tumor cell line adoptive transfer model and a cynomolgus monkey pharmacokinetic profile (half-life>4.5 days) suitable for clinical development. Clinical evaluation of PF-07062119 is ongoing.
Collapse
Affiliation(s)
- Adam R. Root
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | | | - Jatin Narula
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Sara Hanscom
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Jason Wade
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Caryl Meade
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Weijun Ma
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Yongjing Guo
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Yan Liu
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Weili Duan
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Amy C. King
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Yan Zhang
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Eric Sousa
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Amy Tam
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Susan Benard
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Han Yang
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Fang Jin
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | | | | | - Maya Arai
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | - Lidia Mosyak
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | | | | | - H. Lily Zhu
- BioMedicine Design, Pfizer Inc., Andover, MA, USA
| | | | | | | | - Alison Betts
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Lindsay King
- BioMedicine Design, Pfizer Inc., Andover, MA, USA
| | - Edward Rosfjord
- Oncology Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Laura Lin
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Puja Sapra
- Oncology Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Divya Mathur
- Oncology Research & Development, Pfizer Inc., Pearl River, NY, USA
| | - Laird Bloom
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
21
|
Sawant MS, Streu CN, Wu L, Tessier PM. Toward Drug-Like Multispecific Antibodies by Design. Int J Mol Sci 2020; 21:E7496. [PMID: 33053650 PMCID: PMC7589779 DOI: 10.3390/ijms21207496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The success of antibody therapeutics is strongly influenced by their multifunctional nature that couples antigen recognition mediated by their variable regions with effector functions and half-life extension mediated by a subset of their constant regions. Nevertheless, the monospecific IgG format is not optimal for many therapeutic applications, and this has led to the design of a vast number of unique multispecific antibody formats that enable targeting of multiple antigens or multiple epitopes on the same antigen. Despite the diversity of these formats, a common challenge in generating multispecific antibodies is that they display suboptimal physical and chemical properties relative to conventional IgGs and are more difficult to develop into therapeutics. Here we review advances in the design and engineering of multispecific antibodies with drug-like properties, including favorable stability, solubility, viscosity, specificity and pharmacokinetic properties. We also highlight emerging experimental and computational methods for improving the next generation of multispecific antibodies, as well as their constituent antibody fragments, with natural IgG-like properties. Finally, we identify several outstanding challenges that need to be addressed to increase the success of multispecific antibodies in the clinic.
Collapse
Affiliation(s)
- Manali S. Sawant
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Craig N. Streu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemistry, Albion College, Albion, MI 49224, USA
| | - Lina Wu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; (M.S.S.); (C.N.S.)
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Mathias LM, Stohl W. Systemic lupus erythematosus (SLE): emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1283-1302. [PMID: 33034541 DOI: 10.1080/14728222.2020.1832464] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a heterogeneous clinical presentation whose etiologies are multifactorial. A myriad of genetic, hormonal, immunologic, and environmental factors contribute to its pathogenesis, and its diverse biological basis and phenotypic presentations make development of therapeutics difficult. In the past decade, tens of therapeutic targets with hundreds of individual candidate therapeutics have been investigated. AREAS COVERED We used a PUBMED database search through April 2020 to review the relevant literature. This review discusses therapeutic targets in the adaptive and innate immune systems, specifically: B cell surface antigens, B cell survival factors, Bruton's tyrosine kinase, costimulators, IL-12/IL-23, the calcineurin pathway, the JAK/STAT pathway, and interferons. EXPERT OPINION Our ever-improving understanding of SLE pathophysiology in the past decade has allowed us to identify new therapeutic targets. Multiple new drugs are on the horizon that target different elements of the adaptive and innate immune systems. SLE research remains challenging due to the heterogenous clinical presentation of SLE, confounding from background immunosuppressives being taken by SLE patients, animal models that inadequately recapitulate human disease, and imperfect and complicated outcome measures. Despite these limitations, research is promising and ongoing. The search for new therapies that target specific elements of SLE pathophysiology are discussed as well as key findings, pitfalls, and questions surrounding these targets.
Collapse
Affiliation(s)
- Lauren M Mathias
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| |
Collapse
|
23
|
Yang B, Zhao M, Wu H, Lu Q. A Comprehensive Review of Biological Agents for Lupus: Beyond Single Target. Front Immunol 2020; 11:539797. [PMID: 33123125 PMCID: PMC7573553 DOI: 10.3389/fimmu.2020.539797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple immune cells. Due to its complex pathogenesis, the effectiveness of traditional treatment methods is limited. Many patients have developed resistance to conventional treatment or are not sensitive to steroid and immunosuppressant therapy, and so emerging therapeutic antibodies have become an alternative and have been shown to work well in many patients with moderate and severe SLE. This review summarizes the biological agents that are in the preclinical and clinical trial study of SLE. In addition to the various monoclonal antibodies that have been studied for a long time, such as belimumab and rituximab, we focused on another treatment for SLE, bispecific antibodies (BsAbs) such as tibulizumab, which simultaneously targets multiple pathogenic cytokines or pathways. Although the application of BsAbs in cancer has been intensively studied, their application in autoimmune diseases is still in the infant stage. This unique combined mechanism of action may provide a novel therapeutic strategy for SLE.
Collapse
Affiliation(s)
- Bingyi Yang
- Department of Dermatology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haijing Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
24
|
Abstract
Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, in which efforts have focused in particular on cytotoxic T lymphocyte antigen 4 (CTLA4) and PD1, both of which are members of the CD28 family. In autoimmunity, these same pathways can be targeted to opposite effect: to curb the over-exuberant immune response. The CTLA4 checkpoint serves as an exemplar, whereby CTLA4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA4 in autoimmunity. Here, we review the targeting of co-stimulatory molecules in autoimmune diseases, focusing in particular on agents directed at members of the CD28 or tumour necrosis factor receptor families. We present the state of the art in co-stimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field.
Collapse
|
25
|
Swope N, Chung WK, Cao M, Motabar D, Liu D, Ahuja S, Handlogten M. Impact of enzymatic reduction on bivalent bispecific antibody fragmentation and loss of product purity upon reoxidation. Biotechnol Bioeng 2020; 117:1063-1071. [PMID: 31930476 PMCID: PMC10947566 DOI: 10.1002/bit.27264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 11/11/2022]
Abstract
Antibody disulfide bond (DSB) reduction during manufacturing processes is a widely observed phenomenon attributed to host cell reductases present in harvest cell culture fluid. Enzyme-induced antibody reduction leads to product fragments and aggregates that increase the impurity burden on the purification process. The impact of reduction on bivalent bispecific antibodies (BisAbs), which are increasingly entering the clinic, has yet to be investigated. We focused on the reduction and reoxidation properties of a homologous library of bivalent BisAb formats that possess additional single-chain Fv (scFv) fragments with engineered DSBs. Despite all BisAbs having similar susceptibilities to enzymatic reduction, fragmentation pathways were dependent on the scFv-fusion site. Reduced molecules were allowed to reoxidize with and without low pH viral inactivation treatment. Both reoxidation studies demonstrated that multiple, complex BisAb species formed as a result of DSB mispairing. Furthermore, aggregate levels increased for all molecules when no low pH treatment was applied. Combined, our results show that complex DSB mispairing occurs during downstream processes while aggregate formation is dependent on sample treatment. These results are applicable to other novel monoclonal antibody-like formats containing engineered DSBs, thus highlighting the need to prevent reduction of novel protein therapeutics to avoid diminished product quality during manufacturing.
Collapse
Affiliation(s)
- Nicole Swope
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Wai Keen Chung
- Purification Process Sciences, AstraZeneca, Gaithersburg, MD, USA
| | - Mingyan Cao
- Analytical Sciences, AstraZeneca, Gaithersburg, USA
| | - Dana Motabar
- Purification Process Sciences, AstraZeneca, Gaithersburg, MD, USA
| | - Dengfeng Liu
- Analytical Sciences, AstraZeneca, Gaithersburg, USA
| | - Sanjeev Ahuja
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, MD, USA
| | - Michael Handlogten
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
26
|
Zhao X, Ning Q, Mo Z, Tang S. A promising cancer diagnosis and treatment strategy: targeted cancer therapy and imaging based on antibody fragment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3621-3630. [PMID: 31468992 DOI: 10.1080/21691401.2019.1657875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the arrival of the precision medicine and personalized treatment era, targeted therapy that improves efficacy and reduces side effects has become the mainstream approach of cancer treatment. Antibody fragments that further enhance penetration and retain the most critical antigen-specific binding functions are considered the focus of research targeting cancer imaging and therapy. Thanks to the superior penetration and rapid blood clearance of antibody fragments, antibody fragment-based imaging agents enable efficient and sensitive imaging of tumour sites. In tumour-targeted therapy, antibody fragments can directly inhibit tumour proliferation and growth, serve as an ideal carrier for delivery of anti-tumour drugs, or manipulate the immune system to eliminate tumour cells. In this review, the excellent physicochemical properties and the basic structure of antibody fragments are expressly depicted depicted, the progress of antibody fragments in cancer therapy and imaging are thoroughly summarized, and the future development of antibody fragments is predicted.
Collapse
Affiliation(s)
- Xuhong Zhao
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China , Hengyang , China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| | - Zhongcheng Mo
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China , Hengyang , China
| | - Shengsong Tang
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China , Hengyang , China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| |
Collapse
|
27
|
Allen SJ, Lumb KJ. Protein-protein interactions: a structural view of inhibition strategies and the IL-23/IL-17 axis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:253-303. [PMID: 32312425 DOI: 10.1016/bs.apcsb.2019.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions are central to biology and provide opportunities to modulate disease with small-molecule or protein therapeutics. Recent developments in the understanding of the tractability of protein-protein interactions are discussed with a focus on the ligandable nature of protein-protein interaction surfaces. General principles of inhibiting protein-protein interactions are illustrated with structural biology examples from six members of the IL-23/IL-17 signaling family (IL-1, IL-6, IL-17, IL-23 RORγT and TNFα). These examples illustrate the different approaches to discover protein-protein interaction inhibitors on a target-specific basis that has proven fruitful in terms of discovering both small molecule and biologic based protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Samantha J Allen
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, PA, United States
| | - Kevin J Lumb
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, PA, United States
| |
Collapse
|
28
|
Raybould MIJ, Marks C, Lewis AP, Shi J, Bujotzek A, Taddese B, Deane CM. Thera-SAbDab: the Therapeutic Structural Antibody Database. Nucleic Acids Res 2020; 48:D383-D388. [PMID: 31555805 PMCID: PMC6943036 DOI: 10.1093/nar/gkz827] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
The Therapeutic Structural Antibody Database (Thera-SAbDab; http://opig.stats.ox.ac.uk/webapps/therasabdab) tracks all antibody- and nanobody-related therapeutics recognized by the World Health Organisation (WHO), and identifies any corresponding structures in the Structural Antibody Database (SAbDab) with near-exact or exact variable domain sequence matches. Thera-SAbDab is synchronized with SAbDab to update weekly, reflecting new Protein Data Bank entries and the availability of new sequence data published by the WHO. Each therapeutic summary page lists structural coverage (with links to the appropriate SAbDab entries), alignments showing where any near-matches deviate in sequence, and accompanying metadata, such as intended target and investigated conditions. Thera-SAbDab can be queried by therapeutic name, by a combination of metadata, or by variable domain sequence - returning all therapeutics that are within a specified sequence identity over a specified region of the query. The sequences of all therapeutics listed in Thera-SAbDab (461 unique molecules, as of 5 August 2019) are downloadable as a single file with accompanying metadata.
Collapse
Affiliation(s)
- Matthew I J Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles’, Oxford OX1 3LB, UK
| | - Claire Marks
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles’, Oxford OX1 3LB, UK
| | - Alan P Lewis
- Data and Computational Sciences, GlaxoSmithKline Research and Development, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Jiye Shi
- Chemistry Department, UCB Pharma, 216 Bath Road, Slough SL1 3WE, UK
| | - Alexander Bujotzek
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, DE-82377 Penzberg, Germany
| | - Bruck Taddese
- Discovery Sciences Department, AstraZeneca, Granta Park, Cambridge CB21 6GH, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles’, Oxford OX1 3LB, UK
| |
Collapse
|
29
|
Bispecific Antibodies for Autoimmune and Inflammatory Diseases: Clinical Progress to Date. BioDrugs 2020; 34:111-119. [DOI: 10.1007/s40259-019-00400-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Mavragani CP, Moutsopoulos HM. Sjögren's syndrome: Old and new therapeutic targets. J Autoimmun 2019; 110:102364. [PMID: 31831255 DOI: 10.1016/j.jaut.2019.102364] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/09/2023]
Abstract
Sjögren's syndrome (SS) is a prototype autoimmune disease characterized by oral and ocular mucosal dryness following chronic inflammation of salivary and lachrymal glands, respectively. Profound B cell hyperactivity along with systemic manifestations including fatigue, musculoskeletal complaints, features related to hepatic, pulmonary, renal and nervous system involvement, as well as lymphoma development can be also present. Despite that activation of both innate and adaptive immune pathways has been long well documented in SS pathogenesis, systemic immunosuppression in SS, in contrast to other autoimmune diseases, has been largely inefficacious. Biological agents previously implemented in successful therapeutic outcomes in rheumatoid arthritis (RA), such as anti-TNF agents, anakinra, tocilizumab and rituximab failed to reach primary outcomes in randomized double-blind controlled trials in the context of SS. Abatacept and belimumab, already licensed for the treatment of RA and lupus respectively, as well combination regimens of both rituximab and belimumab hold some promise in alleviation of SS-specific complaints, but data from large controlled trials are awaited. Recent advances in dissecting the molecular pathways underlying SS pathogenesis led to an expanding number of novel biological compounds directed towards type I interferon system, antigen presentation, costimulatory pathways, B and T cell activation, as well as germinal center formation. While targeting of cathepsin-S (Petesicatib), inducible costimulator of T cells ligand (prezalumab), and lymphotoxin beta receptor (baminercept) failed to fulfil the primary outcome measures, preliminary results from two randomized placebo controlled trials on CD40 blockade (Iscalimab) and B-cell activating factor receptor (Ianalumab) inhibition resulted in significant reduction of SS disease activity, with a favorable so far safety profile. Results from administration of other kinase inhibitors, a transmembrane activator and calcium-modulator and cytophilin ligand interactor TACI fusion protein (RC18), as well as low dose recombinant interleukin-2 to expand T-regulatory cells are currently awaited.
Collapse
Affiliation(s)
- Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|