1
|
Ma F, Sanchez AC, Song J, Kofman E, Tomazela D, Fayadat-Dilman L, Hettiarachchi K, Al-Sayah MA. Novel Native Reversed-Phase Liquid Chromatography (nRPLC)/MS for Antibody-Drug Conjugates (ADCs) Characterization and Drug-Antibody Ratio (DAR) Assessment. Anal Chem 2025; 97:7756-7764. [PMID: 40163782 DOI: 10.1021/acs.analchem.4c05885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Characterization of drug-antibody ratio (DAR) species in antibody-drug conjugates (ADCs) is crucial for assessing the developability/manufacturability and downstream development of drug candidates. Although hydrophobic interaction chromatography (HIC) is the gold standard for DAR analysis, elucidating DAR species within each HIC peak has historically been challenging. This is due to the nonvolatility and high ionic strength of conventional buffer systems, which necessitate labor-intensive offline fractionation, followed by MS analysis. To address these challenges, an innovative alternative strategy has been developed that directly couples native reversed-phase liquid chromatography (nRPLC) to high-resolution Orbitrap MS for online native MS analysis (nRPLC-MS). In collaboration with Phenomenex, two types of columns, each with a different hydrophobicity, were developed, allowing for elution with low concentration of MS-friendly salt and organic buffer. LC and MS parameters were optimized to enhance the detection of intact DAR species under high flow rate conditions. To demonstrate the feasibility of the platform for characterizing different types of ADCs, both interchain-linked (heterogeneous DAR of 0 to 8) and site-specific ADCs were evaluated. The method enables the nondenatured separation and simultaneous characterization of different DAR species, and strong correlation was observed between this approach and analysis by HIC. This integrated strategy allows unbiased characterization of DAR species without postcolumn flow splitting or peak fractionation. Furthermore, comparisons with two commonly used methods (native SEC-MS and RPLC-MS) have shown that superior separation in terms of selectivity and resolution is achieved with the nRPLC method. Notably, unconjugated antibody (DAR0) was successfully retained with a low-ionic-strength salt using this method. Moreover, the method facilitated the chromatographic separation of positional isomers of DAR4 species with different conjugation linkages, which was not achievable with traditional HIC. As a result, this method holds great promise for high-throughput screening and characterization of ADCs across conjugation methods and payload classes.
Collapse
Affiliation(s)
- Fengfei Ma
- Analytical Research and Development, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - A Carl Sanchez
- R&D Department, Phenomenex Inc., Torrance, California 90501, United States
| | - James Song
- R&D Department, Phenomenex Inc., Torrance, California 90501, United States
| | - Esther Kofman
- Protein Sciences, Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Daniela Tomazela
- Protein Sciences, Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Laurence Fayadat-Dilman
- Protein Sciences, Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Kanaka Hettiarachchi
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Mohammad Ahmed Al-Sayah
- Analytical Research and Development, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
2
|
Webb J, Niu C, Ritter B, Albarghouthi M, Chen X, Wang C. Developing analytical ion exchange chromatography methods for antibody drug conjugates containing the hydrolysis-prone succinimide-thioether conjugation chemistry. J Pharm Sci 2024; 113:3279-3285. [PMID: 39182845 DOI: 10.1016/j.xphs.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Charge variants are one of the most important quality attributes for protein therapeutics, including antibody drug conjugates (ADCs). ADCs are conjugation products between monoclonal antibodies (mAbs) and highly potent payloads. After attaching a payload, the charge profile of a mAb can be modified due to the change in net charge or surface charge. In this study, we present a unique challenge of charge assay development that arises from a desirable engineering of ADCs that incorporates the hydrolysis-prone succinimide-thioether conjugation chemistry. This engineered hydrolysis at conjugation sites is usually not complete during conjugation process and continuously progressing during mild stress. This hydrolysis also creates a carboxylic functional group, which manifests as acidic peaks in the ADC charge profiles. As a result, ion exchange chromatograms become sensitive measurements of this hydrolysis, which often masks the charge profile change due to other important post-translational modifications. In this study, two approaches were explored to address this unique challenge: to remove the hydrolysis heterogeneity by incubating ADCs under high pH conditions to drive complete hydrolysis; and to analyze charge variants at the subunit level after IdeS digestion. Acceptable charge profiles and quantitative integration results were successfully obtained by both approaches.
Collapse
Affiliation(s)
- Jessica Webb
- Department of Analytical Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Chendi Niu
- Department of Analytical Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Benjamin Ritter
- Department of Analytical Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Methal Albarghouthi
- Department of Analytical Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Xiaoyu Chen
- Department of Analytical Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Chunlei Wang
- Department of Analytical Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
3
|
Leng C, Sun S, Lin W, Pavon JA, Gennaro L, Gunawan RC, Bu X, Yang T, Li S. Imaged capillary isoelectric focusing method development for charge variants of high DAR ADCs. Anal Chim Acta 2024; 1328:343176. [PMID: 39266202 DOI: 10.1016/j.aca.2024.343176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Charge heterogeneity is a critical quality attribute for therapeutic biologics including antibody-drug conjugates (ADCs). Developing an ion exchange chromatography (IEX) or an imaged capillary isoelectric focusing (icIEF) method for ADCs with high drug-to-antibody ratio (DAR) is challenging because of the increased hydrophobicity from the payload-linker, DAR heterogeneity, and payload-linker instability. A sub-optimal method can be poorly stability-indicating due to the inability to discern contributions from charge and size variants conjugated with different number of drugs/payloads. Systematic strategy and guidance on charge variant method development is highly desired for high DAR ADCs with various complex structures. RESULTS This work encompasses the development and optimization of icIEF methods for high DAR ADCs of various DAR values (4-8) and payload linker chemistry. Method optimization focuses on improving resolution and stability indicating capabilities and differentiating contributions from the protein and payload-linker. Types, proportion, and combination of solubilizers and carrier ampholytes, as well as focusing parameters were interrogated. Our findings show that the structural units of the linker, the DAR, and the payload chemistry prescribe the selection of buffer, solubilizer, and ampholyte. We demonstrate that a stronger denaturant or solubilizer is needed for high DAR ADCs with polyethylene glycol (PEG)-containing linker structure compared to peptide linker. For unstable payload-linker, buffer system enhances sample stability which is vital to method robustness. In addition, a longer isoelectric focusing time is necessary for an ADC than its corresponding antibody to reach optimal focusing. SIGNIFICANCE To the best of our knowledge, this is the first comprehensive study on icIEF method development for charge variant determination of high DAR ADCs with unique physicochemical properties.
Collapse
Affiliation(s)
- Chuan Leng
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States.
| | - Shuwen Sun
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Wei Lin
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | | | - Lynn Gennaro
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Rico C Gunawan
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Xiaodong Bu
- Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ, 07065, United States
| | - Tong Yang
- Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd, No. 666 Xinhua Avenue, Chengdu Cross-Strait Science and Technology Industry Development Park, Wenjiang District, Chengdu, Sichuan Province, PR China
| | - Senwu Li
- Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd, No. 666 Xinhua Avenue, Chengdu Cross-Strait Science and Technology Industry Development Park, Wenjiang District, Chengdu, Sichuan Province, PR China
| |
Collapse
|
4
|
Johann F, Wöll S, Winzer M, Gieseler H. Agitation-Induced Aggregation of Lysine- And Interchain Cysteine-Linked Antibody-Drug Conjugates. J Pharm Sci 2024; 113:1265-1274. [PMID: 38070776 DOI: 10.1016/j.xphs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 04/19/2024]
Abstract
Drug conjugation to an antibody can affect its stability, which depends on factors such as the conjugation technique used, drug-linker properties, and stress encountered. This study focused on the effects of agitation stress on the physical stability of two lysine (ADC-K) and two interchain cysteine (ADC-C) conjugates of an IgG1 monoclonal antibody (mAb) linked to either ∼4 MMAE or DM1 payloads. During agitation, all antibody-drug conjugates (ADCs) exhibited higher aggregation than the mAb, which was dependent on the conjugation technique (aggregation of ADC-Ks > ADC-Cs) and drug-linker (aggregation of ADCs with MMAE > ADCs with DM1). The aggregation propensities correlated well with higher self-interaction, hydrophobicity, and surface activity of ADCs relative to the mAb. The intermediate reduced mAb (mAb-SH) showed even higher aggregation than the final product ADC-Cs. However, blocking mAb-SH's free thiols with N-ethylmaleimide (NEM) strongly reduced its aggregation, suggesting that free thiols should be minimized in cysteine ADCs. Further, this study demonstrates that a low-volume surface tension method can be used for estimating agitation-induced aggregation of ADCs in early development phases. Identifying liabilities to agitation stress and their relationship to biophysical properties may help optimize ADC stability.
Collapse
Affiliation(s)
- Florian Johann
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutics, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Steffen Wöll
- Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Matthias Winzer
- Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Henning Gieseler
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutics, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
5
|
Gao H, Ge XZ, Liu JW, Wang ST, Xu J, Fang WJ. Effect of Annealing on Visible-Bubble Formation and Stability Profiles of Freeze-Dried High Concentration Omalizumab Formulations. Mol Pharm 2024; 21:1691-1704. [PMID: 38430187 DOI: 10.1021/acs.molpharmaceut.3c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
In the clinical application of freeze-dried highly concentrated omalizumab formulations, extensive visible bubbles (VBs) can be generated and remain for a long period of time in the reconstitution process, which greatly reduces the clinical use efficiency. It is necessary to understand the forming and breaking mechanism of VBs in the reconstitution process, which is a key factor for efficient and safe administration of biopharmaceutical injection. The effects of different thermal treatments on the volume of VBs and stability of omalizumab, mAb-1, and mAb-2 were investigated. The internal microvoids of the cake were characterized by scanning electron microscopy and mercury intrusion porosimetry. Electron paramagnetic resonance was applied to obtain the molecular mobility of the protein during annealing. A large number of VBs were generated in the reconstitution process of unannealed omalizumab and remained for a long period of time. When annealing steps were added, the volume of VBs was dramatically reduced. When annealed at an aggressive temperature (i.e., -6 °C), although the volume of VBs decreased, the aggregation and acidic species increased significantly. Thus, our observations highlight the importance of setting an additional annealing step with a suitable temperature, which contributes to reducing the VBs while maintaining the stability of the high concentration freeze-dried protein formulation.
Collapse
Affiliation(s)
- Han Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xin-Zhe Ge
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jia-Wei Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310016, China
| | - Si-Tao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Xu
- Zhejiang Bioray Biopharmaceutical Co., Taizhou 317000, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310016, China
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321000, China
- Taizhou Institute of Zhejiang University, Taizhou 317000, China
- Jinhua Hongyao Biotech Co., Ltd., Jinhua 321000, China
| |
Collapse
|
6
|
Chen H, Qiu D, Shi J, Wang N, Li M, Wu Y, Tian Y, Bu X, Liu Q, Jiang Y, Hamilton SE, Han P, Sun S. In-Depth Structure and Function Characterization of Heterogeneous Interchain Cysteine-Conjugated Antibody-Drug Conjugates. ACS Pharmacol Transl Sci 2024; 7:212-221. [PMID: 38230295 PMCID: PMC10789146 DOI: 10.1021/acsptsci.3c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
Antibody-drug conjugates (ADCs), integrating high specificity of antigen-targeting antibodies and high potency of cell-killing chemical drugs, have become one of the most rapidly expanding therapeutic biologics in oncology. Although ADCs were widely studied from multiple aspects, overall structural elucidation with comprehensive understanding of variants is scarcely reported. Here, for the first time, we present a holistic and in-depth characterization of an interchain cysteine-conjugated ADC, focusing on conjugation and charge heterogeneity, and in vitro biological activities. Conjugation mapping utilized a bottom-up approach, unraveled positional isomer composition, provided insights into the conjugation process, and elucidated how conjugation affects the physicochemical and biological properties of an ADC. Charge profiling combined bottom-up and top-down approaches to interrogate the origin of charge heterogeneity, its impact on function, and best practice for characterization. Specifically, we pioneered the utilization of capillary isoelectric focusing-mass spectrometry to decode not only critical post-translational modifications but also drug load and positional isomer distribution. The study design provides general guidance for in-depth characterization of ADCs, and the analytical findings in turn benefit the discovery and development of future ADCs.
Collapse
Affiliation(s)
- Huijie Chen
- Analytical
Sciences, WuXi Biologics, 31 Yiwei Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Danye Qiu
- Analytical
Sciences, WuXi Biologics, 1150 Lanfeng Road, Fengxian District, Shanghai 201403, China
| | - Jian Shi
- Analytical
Sciences, WuXi Biologics, 31 Yiwei Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Ningning Wang
- WuXi
Process Development Analytical Science, WuXi Biologics, 200
Meiliang Road, Binhu District, WuXi, Jiangsu 214092, China
| | - Muchen Li
- WuXi
Process Development Analytical Science, WuXi Biologics, 200
Meiliang Road, Binhu District, WuXi, Jiangsu 214092, China
| | - Ying Wu
- Analytical
Sciences, WuXi Biologics, 31 Yiwei Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yu Tian
- Biologics
Innovation & Discovery, WuXi Biologics, 227 Meisheng Road, Waigaoqiao Free
Trade Zone, Shanghai 200131, China
| | - Xiaodong Bu
- Analytical
Research & Development, Merck &
Co., Inc., 126 E. Lincoln
Avenue, Rahway, New Jersey 07065, United States
| | - Qingyuan Liu
- Analytical
Research & Development, Merck &
Co., Inc., 2000 Galloping
Hill Road, Kenilworth, New
Jersey 07033, United States
| | - Yanrui Jiang
- Analytical
Research & Development, MSD, Industrie Nord 1, Schachen (Luzern) CH-6105, Switzerland
| | - Simon E. Hamilton
- Analytical
Research & Development, MSD, 120 Moorgate, London EC2M 6UR, U.K.
| | - Ping Han
- Analytical
Research & Development, Merck &
Co., Inc., 2000 Galloping
Hill Road, Kenilworth, New
Jersey 07033, United States
| | - Shuwen Sun
- Analytical
Research & Development, Merck &
Co., Inc., 126 E. Lincoln
Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
7
|
Abbood A. Optimization of the Imaged cIEF Method for Monitoring the Charge Heterogeneity of Antibody-Maytansine Conjugate. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:8150143. [PMID: 37305029 PMCID: PMC10256444 DOI: 10.1155/2023/8150143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
The aim of this study was to develop a whole-column imaging-detection capillary isoelectric focusing (icIEF) method for the analytical characterization of charge heterogeneity of a novel humanized anti-EphA2 antibody conjugated to a maytansine derivative. In addition to focusing time, sample composition was optimized: pH range, percent of carrier ampholytes, conjugated antibody concentration, and urea concentration. A good separation of charge isoforms was obtained with 4% carrier ampholytes of a large (3-10) and narrow pH range (8-10.5) (1 : 1 ratio), conjugated antibody concentration (0.3-1 mg/ml) with a good linearity (R2: 0.9905), 2 M of urea concentration, and 12 minute for focusing. The optimized icIEF method demonstrated a good interday repeatability with RSD values: <1% (pI), <8% (% peak area), and 7% (total peak areas). The optimized icIEF was useful as an analytical characterization tool to assess the charged isoform profile of a discovery batch of the studied maytansinoid-antibody conjugate in comparison to its naked antibody. It exhibited a large pI range (7.5-9.0), while its naked antibody showed a narrow pI range (8.9-9.0). In the discovery batch of maytansinoid-antibody conjugate, 2% of charge isoforms had the same pI as the pI of naked antibody isoforms.
Collapse
Affiliation(s)
- Ayat Abbood
- Department of Medicinal Chemistry and Quality Control, Faculty of Pharmacy, Tishreen University, Lattakia, Syria
| |
Collapse
|
8
|
Jiang F, Xu XW, Chen FQ, Weng HF, Chen J, Ru Y, Xiao Q, Xiao AF. Extraction, Modification and Biomedical Application of Agarose Hydrogels: A Review. Mar Drugs 2023; 21:md21050299. [PMID: 37233493 DOI: 10.3390/md21050299] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Numerous compounds present in the ocean are contributing to the development of the biomedical field. Agarose, a polysaccharide derived from marine red algae, plays a vital role in biomedical applications because of its reversible temperature-sensitive gelling behavior, excellent mechanical properties, and high biological activity. Natural agarose hydrogel has a single structural composition that prevents it from adapting to complex biological environments. Therefore, agarose can be developed into different forms through physical, biological, and chemical modifications, enabling it to perform optimally in different environments. Agarose biomaterials are being increasingly used for isolation, purification, drug delivery, and tissue engineering, but most are still far from clinical approval. This review classifies and discusses the preparation, modification, and biomedical applications of agarose, focusing on its applications in isolation and purification, wound dressings, drug delivery, tissue engineering, and 3D printing. In addition, it attempts to address the opportunities and challenges associated with the future development of agarose-based biomaterials in the biomedical field. It should help to rationalize the selection of the most suitable functionalized agarose hydrogels for specific applications in the biomedical industry.
Collapse
Affiliation(s)
- Feng Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Xin-Wei Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Fu-Quan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Hui-Fen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - An-Feng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| |
Collapse
|
9
|
Capillary electrophoresis and the biopharmaceutical industry: Therapeutic protein analysis and characterization. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Lan W, Valente JJ, Ilott A, Chennamsetty N, Liu Z, Rizzo JM, Yamniuk AP, Qiu D, Shackman HM, Bolgar MS. Investigation of anomalous charge variant profile reveals discrete pH-dependent conformations and conformation-dependent charge states within the CDR3 loop of a therapeutic mAb. MAbs 2021; 12:1763138. [PMID: 32432964 PMCID: PMC7299213 DOI: 10.1080/19420862.2020.1763138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During the development of a therapeutic monoclonal antibody (mAb-1), the charge variant profile obtained by pH-gradient cation exchange chromatography (CEX) contained two main peaks, each of which exhibited a unique intrinsic fluorescence profile and demonstrated inter-convertibility upon reinjection of isolated peak fractions. Domain analysis of mAb-1 by CEX and liquid chromatography-mass spectrometry indicated that the antigen-binding fragment chromatographed as two separate peaks that had identical mass. Surface plasmon resonance binding analysis to antigen demonstrated comparable kinetics/affinity between these fractionated peaks and unfractionated starting material. Subsequent molecular modeling studies revealed that the relatively long and flexible complementarity-determining region 3 (CDR3) loop on the heavy chain could adopt two discrete pH-dependent conformations: an “open” conformation at neutral pH where the HC-CDR3 is largely solvent exposed, and a “closed” conformation at lower pH where the solvent exposure of a neighboring tryptophan in the light chain is reduced and two aspartic acid residues near the ends of the HC-CDR3 loop have atypical pKa values. The pH-dependent equilibrium between “open” and “closed” conformations of the HC-CDR3, and its proposed role in the anomalous charge variant profile of mAb-1, were supported by further CEX and hydrophobic interaction chromatography studies. This work is an example of how pH-dependent conformational changes and conformation-dependent changes to net charge can unexpectedly contribute to perceived instability and require thorough analytical, biophysical, and functional characterization during biopharmaceutical drug product development.
Collapse
Affiliation(s)
- Wenkui Lan
- Drug Product Development, Bristol Myers Squibb, New Brunswick, United States
| | - Joseph J Valente
- Drug Product Development, Bristol Myers Squibb, New Brunswick, United States
| | - Andrew Ilott
- Drug Product Development, Bristol Myers Squibb, New Brunswick, United States
| | - Naresh Chennamsetty
- Biophysics Center of Excellence, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, United States
| | - Zhihua Liu
- Drug Product Development, Bristol Myers Squibb, New Brunswick, United States
| | - Joseph M Rizzo
- Discovery Biotherapeutics, Bristol Myers Squibb, Pennington, United States
| | - Aaron P Yamniuk
- Discovery Biotherapeutics, Bristol Myers Squibb, Pennington, United States
| | - Difei Qiu
- Chemical Process Department, Bristol Myers Squibb, New Brunswick, United States
| | - Holly M Shackman
- Chemical Process Department, Bristol Myers Squibb, New Brunswick, United States
| | - Mark S Bolgar
- Drug Product Development, Bristol Myers Squibb, New Brunswick, United States
| |
Collapse
|
11
|
Platform Methods to Characterize the Charge Heterogeneity of Three Common Protein Therapeutics by Imaged Capillary Isoelectric Focusing. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2261:93-103. [PMID: 33420987 DOI: 10.1007/978-1-0716-1186-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaged capillary isoelectric focusing (icIEF) is a gold standard method for characterizing the charge heterogeneity of protein therapeutics. A broad range of protein therapeutics such as monoclonal antibodies, antibody-drug conjugates (ADCs), and fusion proteins are routinely analyzed by icIEF due to its high resolution and high reproducibility. Platform methods, which can be applied without modification to the analysis of different protein therapeutics, save valuable time and resources in method development and quality control. Here, we provide platform methods for icIEF analysis of three classes of protein therapeutics, a biosimilar to the monoclonal antibody trastuzumab, recombinant human erythropoietin (rhEPO), and a fusion protein. The details of sample preparation and separation conditions for each molecule are described in this chapter.
Collapse
|