1
|
Muriithi B, Ippoliti S, Finny A, Addepalli B, Lauber M. Clean and Complete Protein Digestion with an Autolysis Resistant Trypsin for Peptide Mapping. J Proteome Res 2024; 23:5221-5228. [PMID: 39392678 PMCID: PMC11536465 DOI: 10.1021/acs.jproteome.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Peptide mapping requires cleavage of proteins in a predictable fashion so that target protein-specific peptides can be reliably identified and quantified. Trypsin, a commonly used protease in this process, can also undergo self-cleavage or autolysis, thereby reducing the effectivity and even cleavage specificity at lysine and arginine residues. Here, we report highly efficient and reproducible peptide mapping of biotherapeutic monoclonal antibodies. We highlight the properties of a homogeneous chemically modified trypsin on thermal stability, a 54% increase in melting temperature with an 84% increase in energy required for unfolding, an indication of more thermally stable trypsin, >90% retained intact mass peak area after exposure to digestion conditions confirming autolysis resistance, 10× more intensity for intact enzyme compared to trypsin of similar source and narrower molecular weight distribution with LC-MS indicative of low degradation compared to 3 other types of trypsin. Finally, we show the utility of this autolysis-resistant trypsin in characterizing biotherapeutic monoclonal antibodies consistently and reliably showing a >30% reduction in missed cleavage for a short-duration protein digestion time of 30 min compared to heterogeneously modified trypsin of a similar source.
Collapse
Affiliation(s)
- Beatrice Muriithi
- Waters
Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Samantha Ippoliti
- Waters
Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Abraham Finny
- Waters
Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | | | - Matthew Lauber
- Waters
Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| |
Collapse
|
2
|
Tiambeng TN, Yan Y, Patel SK, Cotham VC, Wang S, Li N. Characterization of adeno-associated virus capsid proteins using denaturing size-exclusion chromatography coupled with mass spectrometry. J Pharm Biomed Anal 2024; 253:116524. [PMID: 39442445 DOI: 10.1016/j.jpba.2024.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Recombinant adeno-associated viruses (AAVs) are a highly effective platform for gene delivery for the treatment of many human diseases. Characterization of AAV viral protein attributes (VP), such as serotype identity, VP stoichiometry, and VP post-translational modifications, is essential to ensure product and process consistency. While size-exclusion chromatography (SEC) coupled with mass spectrometry (MS) is commonly used in the biopharmaceutical industry for analyzing protein therapeutics, its application to intact AAV VP components has not gained traction, presumably due to difficulties in achieving adequate resolution of VP(1-3) monomers. Herein, we describe the development of a denaturing SEC method and optimization of SEC parameters, including stationary phase pore size, column temperature, and mobile phase composition, to achieve effective chromatographic separation of VP(1-3). We demonstrate that an optimized dSEC-MS method featuring MS-compatible formic acid, can effectively separate VP(1-3) across AAV1, 2, 5, 6, 8, and 9 serotypes using a single column and mobile phase condition. A case study was included to showcase successful application of the dSEC-MS method in analyzing changes across different AAV production processes, yielding similar conclusions to an orthogonal approach, such as hydrophilic interaction chromatography (HILIC)- MS. Additionally, dSEC integrated with fluorescence (FLR) and ultraviolet (UV) detection can be used to semi-quantitatively identify both AAV DNA and VP components from empty and full AAV samples. Overall, this robust and MS-friendly methodological advancement could greatly streamline the development and analytical quality control processes for AAV-based gene therapies, providing a highly sensitive method for intact VP characterization.
Collapse
Affiliation(s)
- Timothy N Tiambeng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA
| | - Yuetian Yan
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA.
| | - Shailin K Patel
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA
| | - Victoria C Cotham
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA
| | - Shunhai Wang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591-6707, USA
| |
Collapse
|
3
|
Malarvannan M, Ravichandiran V, Paul D. Advances in analytical technologies for emerging drug modalities and their separation challenges in LC-MS systems. J Chromatogr A 2024; 1732:465226. [PMID: 39111181 DOI: 10.1016/j.chroma.2024.465226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The last few years have seen a rise in the identification and development of bio-therapeutics through the use of cutting-edge delivery methods or bio-formulations, which has created bio-analytical difficulties. Every year, new bio-pharmaceutical product innovations come out, but the analytical development of these products is challenging. Quantifying the products and components of conjugated molecular structures is essential for preclinical and clinical research in order to guide therapeutic development, given their intrinsic complexity. Furthermore, a significant amount of information is needed for the measurement of these unique modalities by LC-MS techniques. Numerous LC-MS based methods have been developed, including AEX-HPLC-MS, RP-IP-LCMS, HILIC-MS, LCHRMS, Microflow-LC-MS, ASMS, Hybrid LBA/LC-MS, and more. However, these methods continue to face problems, prompting the development of alternative approaches. Therefore, developing bio-molecules that are this complicated and, low in concentration requires a skilled LC-MS based approach and knowledgeable personnel. This review covers general novel modalities classifications, sample preparation techniques, current status and bio-analytical strategies for analyzing various novel modalities, including gene bio-therapeutics, oligonucleotides, antibody-drug conjugates, monoclonal antibodies and PROTACs. It also covers how these strategies have been used in the past and how they are being used now to address challenges in the development of LC-MS based methods, as well as improvement strategies, current advancements and recent developed methods. We additionally covered on the benefits and drawbacks of different LC-MS based techniques for the examination of bio-pharmaceutical products and the future perspectives.
Collapse
Affiliation(s)
- M Malarvannan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India
| | - V Ravichandiran
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India
| | - David Paul
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India.
| |
Collapse
|
4
|
Mesonzhnik N, Belushenko A, Novikova P, Kukharenko A, Afonin M. Enhanced N-Glycan Profiling of Therapeutic Monoclonal Antibodies through the Application of Upper-Hinge Middle-Up Level LC-HRMS Analysis. Antibodies (Basel) 2024; 13:66. [PMID: 39189237 PMCID: PMC11348383 DOI: 10.3390/antib13030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are crucial in modern medicine due to their effectiveness in treating various diseases. However, the structural complexity of mAbs, particularly their glycosylation patterns, presents challenges for quality control and biosimilarity assessment. This study explores the use of upper-hinge middle-up (UHMU)-level ultra-high-performance liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis to improve N-glycan profiling of mAbs. Two specific enzymes, known as IgG degradation enzymes (IGDEs), were used to selectively cleave therapeutic mAbs above the hinge region to separate antibody subunits for further Fc glycan analysis by means of the UHMU/LC-HRMS workflow. The complexity of the mass spectra of IGDEs-digested mAbs was significantly reduced compared to the intact MS level, enabling reliable assignment and relative quantitation of paired Fc glycoforms. The results of the UHMU/LC-HRMS analysis of nine approved therapeutics highlight the significance of this approach for in-depth glycoform profiling.
Collapse
Affiliation(s)
- Natalia Mesonzhnik
- Resource Centre of Analytical Methods, Laboratory Complex, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (P.N.); (M.A.)
| | - Anton Belushenko
- Federal Hygienic and Epidemiological Center of Rospotrebnadzor, Varshavskoe Highway 19a, 117105 Moscow, Russia;
| | - Polina Novikova
- Resource Centre of Analytical Methods, Laboratory Complex, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (P.N.); (M.A.)
| | - Alexey Kukharenko
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, 8/2 Trubetskaya, 119991 Moscow, Russia
| | - Mikhail Afonin
- Resource Centre of Analytical Methods, Laboratory Complex, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (P.N.); (M.A.)
| |
Collapse
|
5
|
Kipura T, Hotze M, Hofer A, Egger AS, Timpen LE, Opitz CA, Townsend PA, Gethings LA, Thedieck K, Kwiatkowski M. Automated Liquid Handling Extraction and Rapid Quantification of Underivatized Amino Acids and Tryptophan Metabolites from Human Serum and Plasma Using Dual-Column U(H)PLC-MRM-MS and Its Application to Prostate Cancer Study. Metabolites 2024; 14:370. [PMID: 39057693 PMCID: PMC11279291 DOI: 10.3390/metabo14070370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Amino acids (AAs) and their metabolites are important building blocks, energy sources, and signaling molecules associated with various pathological phenotypes. The quantification of AA and tryptophan (TRP) metabolites in human serum and plasma is therefore of great diagnostic interest. Therefore, robust, reproducible sample extraction and processing workflows as well as rapid, sensitive absolute quantification are required to identify candidate biomarkers and to improve screening methods. We developed a validated semi-automated robotic liquid extraction and processing workflow and a rapid method for absolute quantification of 20 free, underivatized AAs and six TRP metabolites using dual-column U(H)PLC-MRM-MS. The extraction and sample preparation workflow in a 96-well plate was optimized for robust, reproducible high sample throughput allowing for transfer of samples to the U(H)PLC autosampler directly without additional cleanup steps. The U(H)PLC-MRM-MS method, using a mixed-mode reversed-phase anion exchange column with formic acid and a high-strength silica reversed-phase column with difluoro-acetic acid as mobile phase additive, provided absolute quantification with nanomolar lower limits of quantification within 7.9 min. The semi-automated extraction workflow and dual-column U(H)PLC-MRM-MS method was applied to a human prostate cancer study and was shown to discriminate between treatment regimens and to identify metabolites responsible for discriminating between healthy controls and patients on active surveillance.
Collapse
Affiliation(s)
- Tobias Kipura
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Madlen Hotze
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Alexa Hofer
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Anna-Sophia Egger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Lea E. Timpen
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Christiane A. Opitz
- German Cancer Research Center (DKFZ), Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Paul A. Townsend
- Division of Cancer Sciences, Manchester Cancer Research Center, Manchester Academic Health Sciences Center, University of Manchester, Manchester M20 4GJ, UK
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Lee A. Gethings
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
- Waters Corporation, Wilmslow SK9 4AX, UK
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
- Freiburg Materials Research Center (FMF), Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department Metabolism, Senescence and Autophagy, Research Center One Health Ruhr, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
6
|
Tank P, Vora S, Tripathi S, D'Souza F. Qualification of a LC-HRMS platform method for biosimilar development using NISTmab as a model. Anal Biochem 2024; 688:115475. [PMID: 38336012 DOI: 10.1016/j.ab.2024.115475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/27/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Biosimilars are a cost-effective alternative to biopharmaceuticals, necessitating rigorous analytical methods for consistency and compliance. Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) is a versatile tool for assessing key attributes, encompassing molecular mass, primary structure, and post-translational modifications (PTMs). Adhering to ICH Q2R1, we validated an LC-HRMS based peptide mapping method using NISTmab as a reference. The method validation parameters, covering system suitability, specificity, accuracy, precision, robustness, and carryover, were comprehensively assessed. The method effectively differentiated the NISTmab from similar counterparts as well as from artificially introduced spiked conditions. Notably, the accuracy of mass error for NISTmab specific complementarity determining region peptides was within a maximum of 2.42 parts per million (ppm) from theoretical and the highest percent relative standard deviation (%RSD) observed for precision was 0.000219 %. It demonstrates precision in sequence coverage and PTM detection, with a visual inspection of total ion chromatogram approach for variability assessment. The method maintains robustness when subjected to diverse storage conditions, encompassing variations in column temperature and mobile phase composition. Negligible carryover was noted during the carryover analysis. In summary, this method serves as a versatile platform for multiple biosimilar development by effectively characterizing and identifying monoclonal antibodies, ultimately ensuring product quality.
Collapse
Affiliation(s)
- Paresh Tank
- Analytical Chemistry Division of Zelle Biotechnology Research and Analytical Services, Zelle Biotechnology Pvt. Ltd., A-7 M.I.D.C., Mira Industrial Area, Western Express Highway, Mira Road, Thane, 401 104, India.
| | - Shruti Vora
- Analytical Chemistry Division of Zelle Biotechnology Research and Analytical Services, Zelle Biotechnology Pvt. Ltd., A-7 M.I.D.C., Mira Industrial Area, Western Express Highway, Mira Road, Thane, 401 104, India.
| | - Sarita Tripathi
- Analytical Chemistry Division of Zelle Biotechnology Research and Analytical Services, Zelle Biotechnology Pvt. Ltd., A-7 M.I.D.C., Mira Industrial Area, Western Express Highway, Mira Road, Thane, 401 104, India.
| | - Fatima D'Souza
- Analytical Chemistry Division of Zelle Biotechnology Research and Analytical Services, Zelle Biotechnology Pvt. Ltd., A-7 M.I.D.C., Mira Industrial Area, Western Express Highway, Mira Road, Thane, 401 104, India.
| |
Collapse
|
7
|
Khalikova M, Jireš J, Horáček O, Douša M, Kučera R, Nováková L. What is the role of current mass spectrometry in pharmaceutical analysis? MASS SPECTROMETRY REVIEWS 2024; 43:560-609. [PMID: 37503656 DOI: 10.1002/mas.21858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.
Collapse
Affiliation(s)
- Maria Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jakub Jireš
- Department of Analytical Chemistry, Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Douša
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
8
|
Smith J, Guapo F, Strasser L, Millán-Martín S, Milian SG, Snyder RO, Bones J. Development of a Rapid Adeno-Associated Virus (AAV) Identity Testing Platform through Comprehensive Intact Mass Analysis of Full-Length AAV Capsid Proteins. J Proteome Res 2023; 23:161-174. [PMID: 38123456 PMCID: PMC10775144 DOI: 10.1021/acs.jproteome.3c00513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Adeno-associated viruses (AAVs) are commonly used as vectors for the delivery of gene therapy targets. Characterization of AAV capsid proteins (VPs) and their post-translational modifications (PTMs) have become a critical attribute monitored to evaluate product quality. Liquid chromatography-mass spectrometry (LC-MS) analysis of intact AAV VPs provides both quick and reliable serotype identification as well as proteoform information on each VP. Incorporating these analytical strategies into rapid good manufacturing practice (GMP)-compliant workflows containing robust, but simplified, data processing methods is necessary to ensure effective product quality control (QC) during production. Here, we present a GMP-compliant LC-MS workflow for the rapid identification and in-depth characterization of AAVs. Hydrophilic interaction liquid chromatography (HILIC) MS with difluoroacetic acid as a mobile phase modifier is utilized to achieve the intact separation and identification of AAV VPs and their potential proteoforms. Peptide mapping is performed to confirm PTMs identified during intact VP analysis and for in-depth PTM characterization. The intact separations platform is then incorporated into a data processing workflow developed using GMP-compliant software capable of rapid AAV serotype identification and, if desired, specific serotype PTM monitoring and characterization. Such a platform provides product QC capabilities that are easily accessible in a regulatory setting.
Collapse
Affiliation(s)
- Josh Smith
- Characterisation
and Comparability Laboratory, The National
Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Dublin A94 X099, Ireland
| | - Felipe Guapo
- Characterisation
and Comparability Laboratory, The National
Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Dublin A94 X099, Ireland
| | - Lisa Strasser
- Characterisation
and Comparability Laboratory, The National
Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Dublin A94 X099, Ireland
| | - Silvia Millán-Martín
- Characterisation
and Comparability Laboratory, The National
Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Dublin A94 X099, Ireland
| | - Steven G. Milian
- Patheon
Viral Vector Services, 13859 Progress Blvd, Alachua, Florida 32615, United States
| | - Richard O. Snyder
- Patheon
Viral Vector Services, 13859 Progress Blvd, Alachua, Florida 32615, United States
| | - Jonathan Bones
- Characterisation
and Comparability Laboratory, The National
Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Dublin A94 X099, Ireland
- School
of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin D04 V1W8.F, Ireland
| |
Collapse
|
9
|
Pohl T, Gervais A, Dirksen E, D'Alessio V, Bechtold-Peters K, Burkitt W, Cao L, Greven S, Lennard A, Li X, Lössner C, Niu B, Reusch D, O'Riordan T, Shearer J, Spencer D, Xu W, Yi L. Technical considerations for the implementation of the Multi-Attribute-Method by mass spectrometry in a Quality Control laboratory. Eur J Pharm Biopharm 2023:S0939-6411(23)00112-1. [PMID: 37146738 DOI: 10.1016/j.ejpb.2023.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Multi-attribute methods employing mass spectrometry are applied throughout the biopharmaceutical industry for product and process characterization purposes but are not yet widely accepted as a method for batch release and stability testing under good manufacturing practice (GMP) due to limited experience and level of comfort with the technical, compliance and regulatory aspects of its implementation at quality control (QC) laboratories. Here, current literature related to the development and application of the multi-attribute method by peptide mapping liquid chromatography mass spectrometry (MAM) is compiled with the aim of providing guidance for the implementation of MAM in a QC laboratory. This article, focusing on technical considerations, is the first part of a two-tiered publication, whereby the second part will focus on GMP compliance and regulatory aspects. This publication has been prepared by a group of industry experts representing 14 globally acting major biotechnology companies under the umbrella of the European Federation of Pharmaceutical Industries and Associations (EFPIA) Manufacturing & Quality Expert Group (MQEG).
Collapse
Affiliation(s)
- Thomas Pohl
- Biologics Analytical Development, Novartis Pharma AG, Klybeckstrasse 141, CH-4057 Basel, Switzerland
| | - Annick Gervais
- Analytical Development Sciences for Biologicals, UCB, Chemin du Foriest, 1420 Braine L'Alleud, Belgium
| | - Eef Dirksen
- Analytical Development and Quality Control, Byondis, Microweg 22, 6545 CM, Nijmegen, The Netherlands
| | - Valerio D'Alessio
- Analytical Development Biotech, Merck Serono S.p.A., Via Luigi Einaudi, 11, 00012 Guidonia Montecelio - Rome, Italy
| | - Karoline Bechtold-Peters
- Biologics Drug Product Development, Novartis Pharma AG, Klybeckstrasse 141, CH-4057 Basel, Switzerland
| | - Will Burkitt
- Biological Characterisation Product Development Sciences, UCB, 216 Bath Road, Slough, SL1 3WE, UK
| | - Li Cao
- Strategic External Development, GSK, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, USA
| | - Simone Greven
- Pharmaceuticals, Biological Development, Bayer AG, Friedrich-Ebert-Strasse 217-333, 42117 Wuppertal, Germany
| | - Andrew Lennard
- Amgen, 4 Uxbridge Business Park, Sanderson Road, Uxbridge, UB8 1DH, UK
| | - Xue Li
- Biologics Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, USA
| | - Christopher Lössner
- Analytical Dev. Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Ben Niu
- Biotherapeutics, Bristol Myers Squibb, 4224 Campus Point Court, San Diego, California 92121, USA
| | - Dietmar Reusch
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Tomás O'Riordan
- Eli Lilly Kinsale Limited, Dunderrow, Kinsale, Co. Cork, P17NY71, Ireland
| | - Justin Shearer
- Analytical Development, GSK, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, USA
| | - David Spencer
- BioPharmaceutical Development, Ipsen Biopharm Limited, 9 Ash Road, Wrexham Industrial Estate, Wrexham, LL13 9UF, UK
| | - Wei Xu
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, Maryland 20878, USA
| | - Linda Yi
- Analytical Development, Biogen, 5000 Davis Drive, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
10
|
Maráková K, Renner BJ, Thomas SL, Opetová M, Tomašovský R, Rai AJ, Schug KA. Solid phase extraction as sample pretreatment method for top-down quantitative analysis of low molecular weight proteins from biological samples using liquid chromatography - triple quadrupole mass spectrometry. Anal Chim Acta 2023; 1243:340801. [PMID: 36697174 DOI: 10.1016/j.aca.2023.340801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Targeting and quantifying intact proteins from biological samples is still a very challenging research area. Several crucial steps exist in the analytical workflow, including development of a reliable sample preparation method. Here, we developed and applied for the first time a non-immunoaffinity sample preparation method based on a generally widely available micro-elution solid phase extraction (μSPE) strategy for the extraction of multiple lower molecular weight intact proteins (<30 kDa) from various biological matrices. Omission of a time-consuming drying and reconstitution step after extraction resulted in a more simple and rapid sample preparation procedure. A model set of eleven intact proteins (molecular weights: 5.5-29 kDa; isoelectric points: 4.5-11.3) were analyzed in multiple biological fluids using reversed-phase liquid chromatography with a triple quadrupole mass spectrometer operated in multiple reaction monitoring mode. Various sample pre-treatment reagents, sorbent types, and washing and elution solvents were experimentally tested and optimized to obtain the μSPE clean-up condition for a broad mixture of intact proteins having variable physicochemical properties. 1% trifluoroacetic acid and 0.2% Triton 100-X were selected as suitable sample pre-treatment reagents for releasing protein-protein interactions in human serum/plasma and human urine, respectively. Hydrophilic lipophilic balanced μSPE sorbent was selected as a high performing stationary phase. Addition of 1% trifluoroacetic acid to all washing and elution solutions showed the most beneficial effect for the extraction recovery of the proteins. Under the optimized conditions, reproducible extraction recoveries >65% for all targeted proteins (up to 30 kDa) in human urine and >50% for most of the proteins in serum/plasma were achieved. The selected conditions were applied also for the analysis of clinical serum and urine samples to demonstrate the feasibility of the developed method to target intact proteins directly by more affordable μSPE sample preparation and triple quadrupole mass spectrometry, which could be beneficial in many application fields.
Collapse
Affiliation(s)
- Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Comenius University in Bratislava, Bratislava, Slovakia.
| | - Beatriz J Renner
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Shannon L Thomas
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Martina Opetová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Comenius University in Bratislava, Bratislava, Slovakia
| | - Radovan Tomašovský
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alex J Rai
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Kevin A Schug
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
11
|
Scrosati PM, Konermann L. Atomistic Details of Peptide Reversed-Phase Liquid Chromatography from Molecular Dynamics Simulations. Anal Chem 2023; 95:3892-3900. [PMID: 36745777 DOI: 10.1021/acs.analchem.2c05667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Peptide separations by reversed-phase liquid chromatography (RPLC) are an integral part of bottom-up proteomics. These separations typically employ C18 columns with water/acetonitrile gradient elution in the presence of formic acid. Despite the widespread use of such workflows, the exact nature of peptide interactions with the stationary and mobile phases is poorly understood. Here, we employ microsecond molecular dynamics (MD) simulations to uncover details of peptide RPLC. We examined two tryptic peptides, a hydrophobic and a hydrophilic species, in a slit pore lined with C18 chains that were grafted onto SiO2 support. Our simulations explored peptide trapping, followed by desorption and elution. Trapping in an aqueous mobile phase was initiated by C18 contacts with Lys butyl moieties. This was followed by extensive anchoring of nonpolar side chains (Leu/Ile/Val) in the C18 layer. Exposure to water/acetonitrile triggered peptide desorption in a stepwise fashion; charged sites close to the termini were the first to lift off, followed by the other residues. During water/acetonitrile elution, both peptides preferentially resided close to the pore center. The hydrophilic peptide exhibited no contacts with the stationary phase under these conditions. In contrast, the hydrophobic species underwent multiple transient Leu/Ile/Val binding interactions with C18 chains. These nonpolar interactions represent the foundation of differential peptide retention, in agreement with the experimental elution behavior of the two peptides. Extensive peptide/formate ion pairing was observed in water/acetonitrile, particularly at N-terminal sites. Overall, this work uncovers an unprecedented level of RPLC molecular details, paving the way for MD simulations as a future tool for improving retention prediction algorithms and for the design of novel column materials.
Collapse
Affiliation(s)
- Pablo M Scrosati
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
12
|
Spanov B, Olaleye O, Mesurado T, Govorukhina N, Jungbauer A, van de Merbel NC, Lingg N, Bischoff R. Pertuzumab Charge Variant Analysis and Complementarity-Determining Region Stability Assessment to Deamidation. Anal Chem 2023; 95:3951-3958. [PMID: 36795375 PMCID: PMC9979147 DOI: 10.1021/acs.analchem.2c03275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Pertuzumab is a monoclonal antibody used for the treatment of HER2-positive breast cancer in combination with trastuzumab. Charge variants of trastuzumab have been extensively described in the literature; however, little is known about the charge heterogeneity of pertuzumab. Here, changes in the ion-exchange profile of pertuzumab were evaluated by pH gradient cation-exchange chromatography after stressing it for up to 3 weeks at physiological and elevated pH and 37 °C. Isolated charge variants arising under stress conditions were characterized by peptide mapping. The results of peptide mapping showed that deamidation in the Fc domain and N-terminal pyroglutamate formation in the heavy chain are the main contributors to charge heterogeneity. The heavy chain CDR2, which is the only CDR containing asparagine residues, was quite resistant to deamidation under stress conditions according to peptide mapping results. Using surface plasmon resonance, it was shown that the affinity of pertuzumab for the HER2 target receptor does not change under stress conditions. Peptide mapping analysis of clinical samples showed an average of 2-3% deamidation in the heavy chain CDR2, 20-25% deamidation in the Fc domain, and 10-15% N-terminal pyroglutamate formation in the heavy chain. These findings suggest that in vitro stress studies are able to predict in vivo modifications.
Collapse
Affiliation(s)
- Baubek Spanov
- Department
of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Oladapo Olaleye
- Department
of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Tomés Mesurado
- Department
of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences,
Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Natalia Govorukhina
- Department
of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alois Jungbauer
- Department
of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences,
Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Nico C. van de Merbel
- Department
of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, The Netherlands,Bioanalytical
Laboratory, ICON, Amerikaweg 18, 9407 TK Assen, The Netherlands
| | - Nico Lingg
- Department
of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences,
Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Rainer Bischoff
- Department
of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, The Netherlands,
| |
Collapse
|
13
|
Lignieres L, Legros V, Khelil M, Senecaut N, Lauber MA, Camadro JM, Chevreux G. Capillary liquid chromatography coupled with mass spectrometry for analysis of nanogram protein quantities on a wide-pore superficially porous particle column in top-down proteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1214:123566. [PMID: 36516651 DOI: 10.1016/j.jchromb.2022.123566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
In top-down proteomics experiments, intact protein ions are subjected to gas-phase fragmentation for MS analysis without prior digestion. This approach is used to characterize post-translational modifications and clipped forms of proteins, avoids several "inference" problems associated with bottom-up proteomics, and is well suited to the study of proteoforms. In the past decade, top-down proteomics has progressed rapidly, taking advantage of MS instrumentation improvements and the efforts of pioneering groups working to improve sample handling and data processing. The potential of this technology has been established through its successful use in a number of important biological studies. However, many challenges remain to be addressed like improving protein separation capabilities such that it might become possible to expand the dynamic range of whole proteome analysis, address co-elution and convoluted mass spectral data, and aid final data processing from peak identification to quantification. In this study, we investigated the use of a wide-pore silica-based superficially porous media with a high coverage phenyl bonding, commercially packed into customized capillary columns for the purpose of top-down proteomics. Protein samples of increasing complexity were tested, namely subunit digests of a monoclonal antibody, components of purified histones and proteins extracted from eukaryotic ribosomes. High quality mass spectra were obtained from only 100 ng of protein sample while using difluoroacetic acid as an ion pairing agent to improve peak shape and chromatographic resolution. A peak width at half height of about 15 s for a 45 min gradient time was observed on a complex mixture giving an estimated peak capacity close to 100. Most importantly, efficient separations were obtained for highly diverse proteins and there was no need to make method specific adjustments, suggesting this is a highly versatile and easy-to-use setup for top-down proteomics.
Collapse
Affiliation(s)
- Laurent Lignieres
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Véronique Legros
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Manel Khelil
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Nicolas Senecaut
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Matthew A Lauber
- Waters Corporation, 34, Maple Street, Milford, MA 01757-3696, United States
| | | | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
| |
Collapse
|
14
|
Lenčo J, Jadeja S, Naplekov DK, Krokhin OV, Khalikova MA, Chocholouš P, Urban J, Broeckhoven K, Nováková L, Švec F. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. J Proteome Res 2022; 21:2846-2892. [PMID: 36355445 DOI: 10.1021/acs.jproteome.2c00407] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The performance of the current bottom-up liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses has undoubtedly been fueled by spectacular progress in mass spectrometry. It is thus not surprising that the MS instrument attracts the most attention during LC-MS method development, whereas optimizing conditions for peptide separation using reversed-phase liquid chromatography (RPLC) remains somewhat in its shadow. Consequently, the wisdom of the fundaments of chromatography is slowly vanishing from some laboratories. However, the full potential of advanced MS instruments cannot be achieved without highly efficient RPLC. This is impossible to attain without understanding fundamental processes in the chromatographic system and the properties of peptides important for their chromatographic behavior. We wrote this tutorial intending to give practitioners an overview of critical aspects of peptide separation using RPLC to facilitate setting the LC parameters so that they can leverage the full capabilities of their MS instruments. After briefly introducing the gradient separation of peptides, we discuss their properties that affect the quality of LC-MS chromatograms the most. Next, we address the in-column and extra-column broadening. The last section is devoted to key parameters of LC-MS methods. We also extracted trends in practice from recent bottom-up proteomics studies and correlated them with the current knowledge on peptide RPLC separation.
Collapse
Affiliation(s)
- Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Denis K Naplekov
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Oleg V Krokhin
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, WinnipegR3E 3P4, Manitoba, Canada
| | - Maria A Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Petr Chocholouš
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic
| | - Ken Broeckhoven
- Department of Chemical Engineering (CHIS), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050Brussel, Belgium
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| |
Collapse
|
15
|
Boosting the Liquid Chromatography Separation of Complex Bispecific Antibody Products by Using the Multi-Isocratic Elution Mode. SEPARATIONS 2022. [DOI: 10.3390/separations9090243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In reversed-phase liquid chromatography (RPLC), the selectivity between major species and minor variants of protein biopharmaceutical products is always limited. Unfortunately, the stationary phase chemistry, type of mobile phase (organic modifier and salts) and temperature only have a very limited impact on selectivity. Therefore, instead of using a linear elution gradient, we evaluated a recently developed strategy, named the multi-isocratic elution mode, to improve the chromatographic resolution. In this contribution, a generic workflow involving the use of an Excel spreadsheet is provided for the rapid and successful development of multi-isocratic elution methods, without the need to use HPLC modeling software. This simple strategy was then successfully applied to very complex biopharmaceutical products; these included one reduced mAb-cytokine fusion protein and a mAb-domain-fusion (C-terminal) protein sample, containing numerous minor variants that were poorly separated from the major species. The addition of several isocratic steps during the chromatographic run provides a clear added value in terms of chromatographic selectivity for several variants, simplifying characterization of the sample with advanced MS tools. In addition to these advantages, some of the limitations of the multi-isocratic elution mode were also highlighted; these included the need to use a highly precise pumping device (preferably, a binary pumping system) and the need to prepare highly accurate mobile phases.
Collapse
|
16
|
Matsuda Y, Mendelsohn BA. Recent Advances in Drug-Antibody Ratio Determination of Antibody-Drug Conjugates. Chem Pharm Bull (Tokyo) 2021; 69:976-983. [PMID: 34602579 DOI: 10.1248/cpb.c21-00258] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates (ADCs) are biopharmaceuticals produced by chemically linking small molecules (payloads) to antibodies that possess specific affinity for the target cell. The ADCs currently on the commercially market are the result of a stochastic conjugation of highly-potent payloads to multiple sites on the monoclonal antibody, resulting in a heterogeneous drug-antibody ratio (DAR) and drug distribution. The heterogeneity inherent to ADCs not produced site-specifically may not only be detrimental to the quality of the drug but also is less-desirable from the perspective of regulatory science. An ideal method or unified approach used to measure the DAR for ADCs, a critical aspect of their analysis and characterization, has not yet been established in the ADC field and remains an often-challenging issue for bioanalytical chemists. In this review we describe, compare, and evaluate the characteristics of various DAR determination methods for ADCs featuring recently reported technologies. The future landscape of bioconjugate DAR analysis is also discussed.
Collapse
|
17
|
Zhang X, Jin X, Liu L, Zhang Z, Koza S, Yu YQ, Chen W. Optimized reversed phase LC/MS methods for intact protein analysis and peptide mapping of adeno-associated virus (AAV) proteins. Hum Gene Ther 2021; 32:1501-1511. [PMID: 34278837 PMCID: PMC8742267 DOI: 10.1089/hum.2021.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as the leading gene delivery platform owing to their nonpathogenic nature and long-term gene expression capability. The AAV capsid, in addition to protecting the viral genome, plays an important role in viral infectivity and gene transduction, indicating the value of the constituent viral proteins (VPs) being well-characterized as part of gene therapy development. However, the limited sample availability and sequence homology shared by the VPs pose challenges to adapt existing analytical methods developed for conventional biologics. In this study, we report the development of reversed-phase liquid chromatography/mass spectrometry-based methods for characterization of AAV capsid proteins at intact protein and peptide level with reduced sample consumptions. The developed methods allowed the measurement of VP expression with fluorescence detection and intact mass/post-translational modifications (PTMs) analysis through a benchtop time-of-flight mass spectrometer. The general applicability and validity of the methods for gene therapy product development were demonstrated by applying the optimized methods to multiple common AAV serotypes. A 1-h enzymatic digestion method was also developed using 1.25 μg of AAV VPs, providing >98% protein sequence coverage and reproducible relative quantification of various PTMs of the VPs. The efficient and sensitive analyses of AAV capsid proteins enabled by the reported methods provide further understanding and offer guidance in the development and manufacturing of AAV-related therapeutics.
Collapse
Affiliation(s)
- Ximo Zhang
- Waters Corp, 36565, Scientific Operation, 34 Maple Street, Milford, Milford, Massachusetts, United States, 01757-3604;
| | - Xiaoying Jin
- Sanofi-Aventis US LLC, 5269, Biopharmaceutics Development, One Mountain Road, Framingham, Massachusetts, United States, 01701;
| | - Lin Liu
- Sanofi Genzyme, 2194, 1 Mountain Rd, Framingham, Massachusetts, United States, 01701;
| | - Zichuang Zhang
- Sanofi-Aventis US LLC, 5269, Biopharmaceutics Development, Framingham, Massachusetts, United States;
| | - Stephan Koza
- Waters Corp, 36565, Scientific Operation, Milford, Massachusetts, United States;
| | - Ying Qing Yu
- Waters Corp, 36565, Scientific Operation, Milford, Massachusetts, United States;
| | - Weibin Chen
- Waters Corp, 36565, Scientific Operation, Milford, Massachusetts, United States;
| |
Collapse
|
18
|
Oyama H, Ishii K, Maruno T, Torisu T, Uchiyama S. Characterization of Adeno-Associated Virus Capsid Proteins with Two Types of VP3-Related Components by Capillary Gel Electrophoresis and Mass Spectrometry. Hum Gene Ther 2021; 32:1403-1416. [PMID: 34082578 PMCID: PMC10112878 DOI: 10.1089/hum.2021.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recombinant adeno-associated virus is a leading platform in human gene therapy. The adeno-associated virus (AAV) capsid is composed of three viral proteins (VPs): VP1, VP2, and VP3. To ensure the safety of AAV-based gene therapy products, the stoichiometry of VPs of AAV vector should be carefully monitored. In this study, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, capillary gel electrophoresis (CGE), and liquid chromatography-UV-mass spectrometry (LC-UV-MS) were performed to evaluate the VP components of AAV1, AAV2, and AAV6. Two types of VP3-related components, VP3 variant and VP3 fragment, were identified. The VP3 variant was the N-terminal shorter VP3, of which the translation started at M211, not at the conventional initiation codon, M203. The VP3 variant could be generated by leaky scanning of the first initiation codon of VP3. We also showed that the VP3 variant was identified in a minor peak before VP3 in CGE measurement. Meanwhile, the VP3 fragment was the C-terminal cleaved VP3, of which the sequence of VP3 ended at D590 or D626, indicating that cleavage occurred between D590 and P591, or D626 and G627. The cause of the cleavage of the DP or DG sequence was hydrolysis due to low pH of the mobile phase and high temperature of the column oven in the LC system, which was necessary to clearly separate the peak of VPs. VP3 fragments, detected only in LC-UV-MS in small amount account with less than 3% of total peak area, should be included in the quantification of VP3. Finally, the relationship of VP stoichiometry determined by the above three methods was discussed. From this study, we proposed that the VP components of AAV should be complementarily evaluated by CGE and LC-UV-MS.
Collapse
Affiliation(s)
- Hiroaki Oyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Kentaro Ishii
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji-cho, Japan
| |
Collapse
|
19
|
Han F, Li W, Jin Y, Wang F, Yuan B, Xu H. Rapid and Sensitive LC-MS/MS Method for Simultaneous Determination of Three First-Line Oral Antituberculosis Drug in Plasma. J Chromatogr Sci 2021; 59:432-438. [PMID: 33434918 DOI: 10.1093/chromsci/bmaa130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/30/2020] [Accepted: 11/29/2020] [Indexed: 11/14/2022]
Abstract
A bioanalytical method for simultaneous quantification of isoniazid (INH), pyrazinamide (PZA) and ethambutol (EMB) in plasma was developed and validated using high-performance liquid chromatography with tandem mass spectrometry. After extracted by protein precipitation with acetonitrile, the analytes were separated on a Waters XBridge Amide column by isocratic elution with acetonitrile and 5 mM ammonium acetate solution containing 0.3% formic acid (77:23, v/v) at a flow rate of 0.5 mL/min. The detection was carried out on a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source in positive mode by monitoring the selected ion transitions at m/z 205.2 → 116.1, m/z 137.9 → 121.2, m/z 124.3 → 78.9 and m/z 213.1 → 122.4 for EMB, INH, PZA and EMB-d8 Internal standard (IS), respectively. The calibration curves were linear over the range of 0.0125-2.00 μg/mL for EMB, 0.0625-10.0 μg/mL for INH and 0.250-40.0 μg/mL for PZA. Neither cross-analytes inter-conversion nor matrix effects were observed. The intra- and inter-assay precision (%RSD) values were within 8.80%, and accuracy (%RE) ranged from -11.13 to 13.49%, indicating that the precision and accuracy were well within the acceptable limits of variation. The method would be helpful for analysis of EMB, INH and PZA in plasma samples from clinical pharmacokinetics and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Fei Han
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weiwei Li
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi Jin
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fang Wang
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Yuan
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haiyan Xu
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
20
|
Evaluation of strategies for overcoming trifluoroacetic acid ionization suppression resulted in single-column intact level, middle-up, and bottom-up reversed-phase LC-MS analyses of antibody biopharmaceuticals. Talanta 2021; 233:122512. [PMID: 34215127 DOI: 10.1016/j.talanta.2021.122512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022]
Abstract
A wide range of strategies for efficient chromatography and high MS sensitivity in reversed-phase LC-MS analysis of antibody biopharmaceuticals and their large derivates has been evaluated. They included replacing trifluoroacetic acid with alternative acidifiers, relevancy of elevated column temperature, use of dedicated stationary phases, and counteraction of the suppression effect of trifluoroacetic acid in electrospray ionization. At the column temperature of 60 °C, which significantly reduces in-column protein degradation, the BioResolve RP mAb Polyphenyl, BioShell IgG C4 columns performed best using mobile phases with full or partial replacement of trifluoroacetic acid with difluoroacetic acid in the analysis of intact antibodies. Similarly, 0.03% trifluoroacetic acid in combination with 0.07% formic acid is a good alternative in analyzing antibody chains at 60 °C. Collectively, the addition of 3% 1-butanol to the mobile phase acidified with 0.1% formic acid was the most efficient approach to simultaneously achieving good chromatographic separation and MS sensitivity for intact and reduced antibody biopharmaceuticals. Moreover, this mobile phase combined with the BioResolve RP mAb Polyphenyl column was subsequently demonstrated to provide excellent results for peptide mapping of antibody biopharmaceuticals fully comparable with those obtained using a state-of-the-art column for peptide separation, thus opening an avenue for a single-column multilevel analysis of these biotherapeutics.
Collapse
|
21
|
DeLano M, Walter TH, Lauber MA, Gilar M, Jung MC, Nguyen JM, Boissel C, Patel AV, Bates-Harrison A, Wyndham KD. Using Hybrid Organic-Inorganic Surface Technology to Mitigate Analyte Interactions with Metal Surfaces in UHPLC. Anal Chem 2021; 93:5773-5781. [PMID: 33798331 DOI: 10.1021/acs.analchem.0c05203] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Interactions of analytes with metal surfaces in high-performance liquid chromatography (HPLC) instruments and columns have been reported to cause deleterious effects ranging from peak tailing to a complete loss of the analyte signal. These effects are due to the adsorption of certain analytes on the metal oxide layer on the surface of the metal components. We have developed a novel surface modification technology and applied it to the metal components in ultra-HPLC (UHPLC) instruments and columns to mitigate these interactions. A hybrid organic-inorganic surface, based on an ethylene-bridged siloxane chemistry, was developed for use with reversed-phase and hydrophilic interaction chromatography. We have characterized the performance of UHPLC instruments and columns that incorporate this surface technology and compared the results with those obtained using their conventional counterparts. We demonstrate improved performance when using the hybrid surface technology for separations of nucleotides, a phosphopeptide, and an oligonucleotide. The hybrid surface technology was found to result in higher and more consistent analyte peak areas and improved peak shape, particularly when using low analyte mass loads and acidic mobile phases. Reduced abundances of iron adducts in the mass spectrum of a peptide were also observed when using UHPLC systems and columns that incorporate hybrid surface technology. These results suggest that this technology will be particularly beneficial in UHPLC/mass spectrometry investigations of metal-sensitive analytes.
Collapse
Affiliation(s)
- Mathew DeLano
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Thomas H Walter
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Matthew A Lauber
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Moon Chul Jung
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Jennifer M Nguyen
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Cheryl Boissel
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Amit V Patel
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | | | - Kevin D Wyndham
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| |
Collapse
|
22
|
Lardeux H, Duivelshof BL, Colas O, Beck A, McCalley DV, Guillarme D, D’Atri V. Alternative mobile phase additives for the characterization of protein biopharmaceuticals in liquid chromatography – Mass spectrometry. Anal Chim Acta 2021; 1156:338347. [DOI: 10.1016/j.aca.2021.338347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
|
23
|
Song YE, Dubois H, Hoffmann M, D́Eri S, Fromentin Y, Wiesner J, Pfenninger A, Clavier S, Pieper A, Duhau L, Roth U. Automated mass spectrometry multi-attribute method analyses for process development and characterization of mAbs. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1166:122540. [DOI: 10.1016/j.jchromb.2021.122540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
|
24
|
Field JK, Euerby MR, Haselmann KF, Petersson P. Investigation into reversed-phase chromatography peptide separation systems Part IV: Characterisation of mobile phase selectivity differences. J Chromatogr A 2021; 1641:461986. [PMID: 33631703 DOI: 10.1016/j.chroma.2021.461986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
The differentiation of mobile phase compositions between sub-classes which exhibit distinct chromatographic selectivity (i.e. termed characterisation) towards a range of peptide probes with diverse functionality and hence the possibility for multi-modal retention mechanisms has been undertaken. Due to the complexity of peptide retention mechanisms in given mobile phase conditions, no attempt has been made to explain these, instead mobile phases have simply been classified into distinct groups with an aim of identifying those yielding differing selectivities for use in strategic method development roadmaps for the analysis of peptide mixtures. The selectivity differences between nine synthetic peptides (fragments of [Ile27]-Bovine GLP-2) were used to assess how fifty-one RPC mobile phase compositions of differing pH (range 1.8 - 7.8), salt types, ionic strengths, ion-pair reagents and chaotropic / kosmotropic additives affected chromatographic selectivity on a new generation C18 stationary phase (Ascentis Express C18). The mobile phase compositions consisted of commonly used and novel UV or MS compatible additives. The chemometric tool of Principal Component Analysis (PCA) was used to visualise the differences in selectivity generated between the various mobile phases evaluated. The results highlight the importance of screening numerous mobile phases of differing pH, ion-pair reagents and ionic strength in order to maximise the probability of achieving separation of all the peptides of interest within a complex mixture. PCA permitted a ranking of the relative importance of the various mobile phase parameters evaluated. The concept of using this approach was proven in the analysis of a sample of Bovine GLP-2 (1-15) containing synthesis related impurities. Mobile phases with high ionic strength were demonstrated to be crucial for the generation of symmetrical peaks. The observations made on the C18 phase were compared on three additional stationary phases (i.e. alkyl amide, fluorophenyl and biphenyl), which had previously been shown to possess large selectivity differences towards these peptides, on a limited sub-set of mobile phases. With the exception of the ion-pair reagent, similar trends were obtained for the C18, fluorophenyl and biphenyl phases intimating the applicability of these findings to the vast majority of RPC columns (i.e. neutral or weakly polar in character) which are suitable for the analysis of peptides. The conclusions were not relevant for columns with a more disparate nature (i.e. containing a high degree of positive charge).
Collapse
Affiliation(s)
- Jennifer K Field
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Melvin R Euerby
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, United Kingdom; Shimadzu UK, Milton Keynes, Buckinghamshire, MK12 5RD, United Kingdom
| | | | | |
Collapse
|
25
|
Thomas SL, Thacker JB, Schug KA, Maráková K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci 2020; 44:211-246. [DOI: 10.1002/jssc.202000936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Shannon L. Thomas
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Jonathan B. Thacker
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Kevin A. Schug
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| |
Collapse
|
26
|
Current and future trends in reversed-phase liquid chromatography-mass spectrometry of therapeutic proteins. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Huang S, Wang J, Guo Z, Wang Y, Liu C. Quantitative Measurement of Melittin in Asian Honeybee Venom Using a New Method Including UPLC-QqTOF-MS. Toxins (Basel) 2020; 12:toxins12070437. [PMID: 32635485 PMCID: PMC7404999 DOI: 10.3390/toxins12070437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022] Open
Abstract
Asian honeybee venom is widely used in traditional oriental medicine. Melittin is the main component of Asian honeybee venom. In the present study, an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QqTOF-MS) method was used for accurate qualitative and quantitative analyses of melittin in Asian honeybee venom. The results showed that the dynamic linear range of melittin was from 0.094 to 20 μg/mL, and the limit of quantification was 0.3125 μg/mL. The spiking recovery of melittin in honeybee venom ranged from 84.88% to 93.05%. Eighteen Asian honeybee venom samples in eighteen batches were collected from two different zones of China, and their melittin contents were measured. The contents of melittin in Asian honeybee venom samples was 33.9–46.23% of dry weight. This method proved a useful tool for the rapid evaluation of the authenticity and quality of Asian honeybee venom in terms of the melittin contents, and will contribute to a broader understanding of Asian honeybee venom.
Collapse
|
28
|
Nagy G, Attah IK, Conant CR, Liu W, Garimella SVB, Gunawardena HP, Shaw JB, Smith RD, Ibrahim YM. Rapid and Simultaneous Characterization of Drug Conjugation in Heavy and Light Chains of a Monoclonal Antibody Revealed by High-Resolution Ion Mobility Separations in SLIM. Anal Chem 2020; 92:5004-5012. [PMID: 32142606 PMCID: PMC8754684 DOI: 10.1021/acs.analchem.9b05209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antibody-drug conjugates (ADCs) have recently gained traction in the biomedical community due to their promise for human therapeutics and an alternative to chemotherapy for cancer. Crucial metrics for ADC efficacy, safety, and selectivity are their drug-antibody ratios (DARs). However, DAR characterization (i.e., determining the average number of conjugated drugs on the antibody) through analytical methods remains challenging due to the heterogeneity of drug conjugation as well as the numerous post-translational modifications possible in the monoclonal antibody. Herein, we report on the use of high-resolution ion mobility spectrometry separations in structures for lossless ion manipulations coupled to mass spectrometry (SLIM IMS-MS) for the rapid and simultaneous characterization of the drug load profile (i.e., stoichiometric distribution of the number of conjugated drugs present on the mAb), determination of the weighted average DAR in both the heavy and light chains of a model antibody-drug conjugate, and calculation of the overall DAR of the ADC. After chemical reduction of the ADC and a subsequent 31.5 m SLIM IMS separation, the various drug-bound antibody species could be well resolved for both chains. We also show significantly higher resolution separations were possible for these large ions with SLIM IMS as compared to ones performed on a commercially available (1 m) drift tube IMS-MS platform. We expect high-resolution SLIM IMS separations will augment the existing toolbox for ADC characterization, particularly to enable the rapid optimization of DAR for a given ADC and thus better understand its potential toxicity and potency.
Collapse
Affiliation(s)
- Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher R Conant
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Weijing Liu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Harsha P Gunawardena
- Janssen Research & Development, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Jared B Shaw
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
29
|
Maráková K, Rai AJ, Schug KA. Effect of difluoroacetic acid and biological matrices on the development of a liquid chromatography-triple quadrupole mass spectrometry method for determination of intact growth factor proteins. J Sep Sci 2020; 43:1663-1677. [PMID: 32052929 DOI: 10.1002/jssc.201901254] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
In biological systems, variable protein expression is a crucial marker for numerous diseases, including cancer. The vast majority of liquid chromatography-triple quadrupole mass spectrometry-based quantitative protein assays use bottom-up methodologies, where proteins are subjected to proteolytic cleavage prior to analysis. Here, the effect of difluoroacetic acid and biological matrices on the developement of a multiple reaction monitoring based top-down reversed-phase liquid chromatography-triple quadrupole mass spectrometry method for analysis of cancer-related intact proteins was evaluated. Seven growth factors (5.5-26.5 kDa; isoelectric points: 4.6-9.9) were analyzed on a wide-pore C4 column. The optimized method was performed at 30°C, using a 0.2 mL/min flow rate, a 10 %B/min gradient slope, and 0.05% v/v difluoroacetic acid as a mobile phase modifier. The increase of mass spectrometry sensitivity due to the difluoroacetic acid (estimated limits of detection in biological matrices 1-500 ng/mL) significantly varied for proteins with lower and higher charge state distributions. Matrix effects, as well as the specificity of the method were assessed for variable biological samples and pretreatment methods. This work demonstrates method development to improve the ability to target intact proteins directly by more affordable triple quadrupole mass spectrometry instrumentation, which could be beneficial in many application fields.
Collapse
Affiliation(s)
- Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alex J Rai
- Department of Pathology and Cell Biology Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Kevin A Schug
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|