1
|
Xu R, Zheng Y, Tai W. A single-chain fab derived drug conjugate for HER2 specific delivery. Biomaterials 2025; 313:122798. [PMID: 39244823 DOI: 10.1016/j.biomaterials.2024.122798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Despite the development of antibody-drug conjugates, the fragment Fab-based drug conjugates offer some unique capabilities in terms of safety, clearance, penetration and others. Current methods for preparing Fab drug conjugates are limited by the availability and stability of Fab proteins, leaving reports on this rare. Here, we found that a single-chain scaffold of Fab enables stabilization of the paired structure and supports high-yield expression in bacteria cytoplasm. Furthermore, we conjugated anti-neoplastic agent SN38 to the C-terminus by sortase A ligation and generated a homogenous Fab conjugate with the drug-to-Fab ratio of 1. The resulting anti-HER2 Fab-SN38 conjugate demonstrated potent and antigen-dependent cell-killing ability with the aid of its special cathepsin-triggered cyclization-promoted release mechanism. In vivo, Fab-SN38 can prevent growths of HER2-positive tumors in athymic mice and be well tolerated to the treatment at 7 mg/kg per dose. Anti-tumor activity, high dose tolerance and penetration advantage observed in this study would merit Fab conjugate investigation in target chemotherapy.
Collapse
Affiliation(s)
- Ruolin Xu
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yan Zheng
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Wanyi Tai
- Department of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
2
|
Tedeschini T, Campara B, Grigoletto A, Zanotto I, Cannella L, Gabbia D, Matsuno Y, Suzuki A, Yoshioka H, Armirotti A, De Martin S, Pasut G. Optimization of a pendant-shaped PEGylated linker for antibody-drug conjugates. J Control Release 2024; 375:74-89. [PMID: 39216599 DOI: 10.1016/j.jconrel.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In this work, we conceived and developed antibody-drug conjugates (ADCs) that could efficiently release the drug after enzymatic cleavage of the linker moiety by tumoral proteases. The antibody-drug linkers we used are the result of a rational optimization of a previously reported PEGylated linker, PUREBRIGHT® MA-P12-PS, which showed excellent drug loading capacities but lacked an inbuilt drug discharge mechanism, thus limiting the potency of the resulting ADCs. To address this limitation, we chose to incorporate a protease-sensitive trigger into the linker to favor the release of a "PEGless" drug inside the tumor cells and, therefore, obtain potent ADCs. Currently, most marketed ADCs are based on the Val-Cit dipeptide followed by a self-immolative spacer for releasing the drug in its unmodified form. Here, we selected two untraditional peptide sequences, a Phe-Gly dipeptide and a Val-Ala-Gly tripeptide and placed one or the other in between the drug on one side (N-terminus) and the rest of the linker, including the PEG moiety, on the other side (C-terminus), without a self-immolative group. We found that both linkers responded to cathepsin B, a reference lysosomal enzyme, and liberated a PEG-free drug catabolite, as desired. We then used the two linkers to generate ADCs based on trastuzumab (a HER2-targeting antibody) and DM1 (a microtubule-targeted cytotoxic agent) with an average drug-to-antibody ratio (DAR) of 4 or 8. The ADCs showed restored cytotoxicity in vitro, which was proportional to the DM1 loading and generally higher for the ADCs bearing Val-Ala-Gly in their structure. In an ovarian cancer mouse model, the DAR 8 ADC based on Val-Ala-Gly behaved better than Kadcyla® (an approved ADC of DAR 3.5 used as control throughout this study), leading to a higher tumor volume reduction and more prolonged median survival. Taken together, our results depict a successful linker optimization process and encourage the application of the Val-Ala-Gly tripeptide as an alternative to other existing protease-sensitive triggers for ADCs.
Collapse
Affiliation(s)
- T Tedeschini
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy.
| | - B Campara
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - A Grigoletto
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - I Zanotto
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - L Cannella
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - D Gabbia
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - Y Matsuno
- NOF CORPORATION, Life Science Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - A Suzuki
- NOF CORPORATION, Life Science Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - H Yoshioka
- NOF CORPORATION, Life Science Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - A Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - S De Martin
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - G Pasut
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy.
| |
Collapse
|
3
|
Okamoto I, Kuyama S, Girard N, Lu S, Franke F, Li Z, Danchaivijitr P, Han JY, Sun JM, Sugawara S, Pan E, Ren N, Chen A, Rajagopalan R, Lisberg AE. TROPION-Lung07: Phase III study of Dato-DXd + pembrolizumab ± platinum-based chemotherapy as 1L therapy for advanced non-small-cell lung cancer. Future Oncol 2024:1-10. [PMID: 39469838 DOI: 10.1080/14796694.2024.2409621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
For patients with advanced/metastatic non-small-cell lung cancer (NSCLC) without actionable genomic alterations and low (<50%) PD-L1 expression, pembrolizumab plus pemetrexed and platinum chemotherapy is a preferred first-line treatment. These patients have comparatively worse outcomes than those with higher PD-L1 expression, underscoring the need for new combination strategies. Datopotamab deruxtecan (Dato-DXd), a TROP2-directed antibody-drug conjugate, has demonstrated encouraging antitumor activity and safety in this patient population. We describe the rationale and design of TROPION-Lung07, a randomized, open-label Phase III study assessing Dato-DXd in combination with pembrolizumab with/without platinum-based chemotherapy versus pembrolizumab plus pemetrexed and platinum-based chemotherapy in patients with advanced/metastatic non-squamous NSCLC without actionable genomic alterations and <50% PD-L1 expression. Primary study objectives are progression-free survival and overall survival.Clinical Trial Registration: NCT05555732 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Isamu Okamoto
- Kyushu University Hospital, Department of Respiratory Medicine, Fukuoka, 812-8582, Japan
| | - Shoichi Kuyama
- Iwakuni Clinical Center, Department of Respiratory Medicine, Yamaguchi, 740-8510, Japan
| | - Nicolas Girard
- Institut Curie, Department of Medical Oncology, Paris 75005, France
| | - Shun Lu
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Lung Cancer Center, Shanghai 200030, China
| | - Fábio Franke
- Oncosite-Centro De Pesquisa Clínica, Department of Clinical Research, Ijuí 98700-000, Brazil
| | - Ziming Li
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Lung Cancer Center, Shanghai 200030, China
| | - Pongwut Danchaivijitr
- Faculty of Medicine Siriraj Hospital, Department of Medicine, Bangkok, 10700, Thailand
| | - Ji-Youn Han
- National Cancer Center, Center for Lung Cancer, Goyang, Gyeonggi 10408, Republic of Korea
| | - Jong-Mu Sun
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Medicine, Seoul, 06351, Republic of Korea
| | - Shunichi Sugawara
- Sendai Kousei Hospital, Department of Pulmonary Medicine, Sendai, 9810914, Japan
| | - Edward Pan
- Daiichi Sankyo, Inc., Global Research & Development, Basking Ridge, NJ 07920, USA
| | - Natalie Ren
- Daiichi Sankyo, Inc., Clinical Development, Basking Ridge, NJ 07921, USA
| | - Aiying Chen
- Daiichi Sankyo Inc., Biostatics and Data Management, Basking Ridge, NJ 0792 1, USA
| | - Rachana Rajagopalan
- Daiichi Sankyo, Inc., Clinical Safety and Pharmacovigilance, London UB8 1DH, UK
| | - Aaron E Lisberg
- David Geffen School of Medicine, University of California Los Angeles (UCLA), Department of Medicine, Division of Hematology & Oncology, Los Angeles, CA 90404, USA
| |
Collapse
|
4
|
Xi M, Zhu J, Zhang F, Shen H, Chen J, Xiao Z, Huangfu Y, Wu C, Sun H, Xia G. Antibody-drug conjugates for targeted cancer therapy: Recent advances in potential payloads. Eur J Med Chem 2024; 276:116709. [PMID: 39068862 DOI: 10.1016/j.ejmech.2024.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a promising cancer therapy modality which specifically delivers highly toxic payloads to cancer cells through antigen-specific monoclonal antibodies (mAbs). To date, 15 ADCs have been approved and more than 100 ADC candidates have advanced to clinical trials for the treatment of various cancers. Among these ADCs, microtubule-targeting and DNA-damaging agents are at the forefront of payload development. However, several challenges including toxicity and drug resistance limit the potential of this modality. To tackle these issues, multiple innovative payloads such as immunomodulators and proteolysis targeting chimeras (PROTACs) are incorporated into ADCs to enable multimodal cancer therapy. In this review, we describe the mechanism of ADCs, highlight the importance of ADC payloads and summarize recent progresses of conventional and unconventional ADC payloads, trying to provide an insight into payload diversification as a key step in future ADC development.
Collapse
Affiliation(s)
- Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jingjing Zhu
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Fengxia Zhang
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jianhui Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Ziyan Xiao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanping Huangfu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Gang Xia
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| |
Collapse
|
5
|
Moin KA, Gamvroulas EM, Kelley KC, Moshirfar M. Are Autologous Blood Serum Eye Drops Safe for Patients Using Antibody-Drug Conjugates? Cornea 2024; 43:e34-e35. [PMID: 39039629 DOI: 10.1097/ico.0000000000003642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Affiliation(s)
- Kayvon A Moin
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT
| | | | - Kristen C Kelley
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Majid Moshirfar
- Hoopes Vision Research Center, Hoopes Vision, Draper, UT
- John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT
- Utah Lions Eye Bank, Murray, UT
| |
Collapse
|
6
|
Zheng F, Du Y, Yuan Y, Wang Z, Li S, Xiong S, Zeng J, Tan Y, Liu X, Xu S, Fu B, Liu W. Risk analysis of enfortumab vedotin: A real-world approach based on the FAERS database. Heliyon 2024; 10:e37544. [PMID: 39309793 PMCID: PMC11415710 DOI: 10.1016/j.heliyon.2024.e37544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Purpose To analyze the risk of enfortumab vedotin (EV), a targeted therapy for advanced bladder cancer, using real-world data from the U.S. Food and Drug Administration's Federal Adverse Event Reporting System (FAERS). Methods A retrospective pharmacovigilance analysis was conducted using FAERS data from Q1 2020 to Q1 2024. Adverse drug events (ADEs) related to EV were identified and categorized according to the System Organ Classes (SOCs) and specific events. Statistical methods, such as the proportional reporting ratio, reporting odds ratio (ROR), Bayesian confidence propagation neural network, and empirical Bayesian geometric mean were used to detect safety signals. Results Of the 7,449,181 FAERS case reports, 1,617 EV-related ADEs were identified, including 101 preferred terms and 22 SOCs. The key SOCs included skin and subcutaneous tissue, metabolic, and nutritional disorders. Rare ADEs, such as lichenoid keratosis (n = 4; ROR 26.89), small intestinal perforation (n = 3; ROR 24.51), pigmentation disorder (n = 9; ROR 18.16), and cholangitis (n = 8; ROR 17.48), showed significant disproportionality. Conclusion While most findings aligned with the existing data, new signs such as lichenoid keratosis and small intestinal perforation were identified. Further studies are necessary to validate these findings and emphasize the need for the clinical monitoring of EV-related ADEs.
Collapse
Affiliation(s)
- Fuchun Zheng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Yuanzhuo Du
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Yuyang Yuan
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Zhipeng Wang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Sheng Li
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Situ Xiong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Yifan Tan
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Songhui Xu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Wei Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| |
Collapse
|
7
|
Alexander S, Aleem U, Jacobs T, Frizziero M, Foy V, Hubner RA, McNamara MG. Antibody-Drug Conjugates and Their Potential in the Treatment of Patients with Biliary Tract Cancer. Cancers (Basel) 2024; 16:3345. [PMID: 39409965 PMCID: PMC11476249 DOI: 10.3390/cancers16193345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Biliary tract cancers (BTCs) are aggressive in nature, often presenting asymptomatically until they are diagnosed at an advanced stage. Surgical resection or liver transplantation are potential curative options. However, a large proportion of patients present with incurable locally advanced or metastatic disease and most of these patients are only eligible for palliative chemotherapy or best supportive care. More recently, targeted therapies have proven beneficial in a molecularly selected subgroup of patients with cholangiocarcinoma who have progressed on previous lines of systemic treatment. However, only a minority of patients with BTCs whose tumours harbour specific molecular alterations can access these therapies. Methods: In relation to ADCs, studies regarding use of antibody-drug conjugates in cancer, particularly in BTCs, were searched in Embase (1974 to 2024) and Ovid MEDLINE(R) (1946 to 2024) to obtain relevant articles. Examples of current clinical trials utilising ADC treatment in BTCs were extracted from the ClinicalTrials.gov trial registry. Conclusions: Overall, this review has highlighted that ADCs have shown encouraging outcomes in cancer therapy, and this should lead to further research including in BTCs, where treatment options are often limited. The promising results observed with ADCs in various cancers underscore their potential as a transformative approach in oncology, warranting continued exploration and development and the need for education on the management of their specific toxicities. By addressing current challenges and optimising ADC design and application, future studies could potentially improve treatment outcomes for patients with BTCs and beyond, potentially in both early and advanced stage settings.
Collapse
Affiliation(s)
- Shaun Alexander
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Umair Aleem
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Timothy Jacobs
- The Library, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Melissa Frizziero
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Victoria Foy
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Richard A. Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK; (U.A.); (M.F.); (V.F.); (R.A.H.)
| | - Mairéad G. McNamara
- Division of Cancer Sciences, School of Medical Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| |
Collapse
|
8
|
Lim SY, Kim L, Kim H, Park JA, Yun J, Lim KS. Synergistic Chemo-Immunotherapy: Recombinant Fusion Protein-Based Surface Modification of NK Cell for Targeted Cancer Treatment. Pharmaceutics 2024; 16:1189. [PMID: 39339225 PMCID: PMC11435017 DOI: 10.3390/pharmaceutics16091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
While traditional combination anticancer treatments have shown promising results, there remains significant interest in developing innovative methods to enhance and integrate chemotherapy and immunotherapy. This study introduces a recombinant fusion protein-based cell surface modification system that synergistically combines chemotherapy and immunotherapy into a single-targeted chemo-immunotherapy approach. A cell surface-modified protein composed of an antibody-specific binding domain and a cell-penetrating domain rapidly converts immune cells into chemo-immuno therapeutics by binding to antibodies on the surface of immune cells. Utilizing a non-invasive, non-toxic approach free of chemical modifications and binding, our system homogeneously transforms immune cells by transiently introducing targeted cytotoxic drugs into them. The surface-engineered immune cells loaded with antibody-drug conjugates (ADCs) significantly inhibit the growth of target tumors and enhance the targeted elimination of cancer cells. Therefore, NK cells modified by the cell surface-modified protein to incorporate ADCs could be expected to achieve the combined effects of targeted cancer cell recognition, chemotherapy, and immunotherapy, thereby enhancing their therapeutic efficacy against cancer. This strategy allows for the efficient and rapid preparation of advanced chemo-immuno therapeutics to treat various types of cancer and provides significant potential to improve the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Su Yeon Lim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Luna Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hongbin Kim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jina Yun
- Division of Hemato-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Kwang Suk Lim
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Biotechnology and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
9
|
Sun Y, Lu Y, Li X, He Y, Yong TK, Keng CS, Yahaya B, Liu Y, Lin J. Intelligent drugs based on notch protein remodeling: a defensive targeting strategy for tumor therapy. Cell Death Dis 2024; 15:632. [PMID: 39198434 PMCID: PMC11358381 DOI: 10.1038/s41419-024-07008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
In the process of tumor treatment, systemic drug administration is hindered by biological barriers, leading to the retention of a large number of drug molecules in healthy tissues and causing unavoidable side effects. The precise deployment of drugs at the tumor site is expected to alleviate this phenomenon. Here, we take endostatin and Her2 (+) tumors as examples and develop an intelligent drug with simple "wisdom" by endowing mesenchymal stem cells (MSCs) with an intelligent response program (iMSCEndostatin). It can autonomously perceive and distinguish tumor cells from non-tumor cells, establishing a logical connection between tumor signals and drug release. Enable it to selectively deploy drugs at the tumor site, thereby locking the toxicity of drugs at the tumor site. Unlike traditional aggressive targeting strategies that aim to increase drug concentration at the lesion, intelligent drugs are more inclined to be defensive strategies that prevent the presence of drugs in healthy tissues.
Collapse
Affiliation(s)
- Yuliang Sun
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, SAINS@BERTAM, 13200, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program (BCTRP), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Yilin Lu
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xinze Li
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanan He
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China
| | - Then Kong Yong
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Cheong Soon Keng
- CryoCord Sdn Bhd, Bio-X Centre, 63000, Cyberjaya, Selangor, Malaysia
| | - Badrul Yahaya
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, SAINS@BERTAM, 13200, Kepala Batas, Penang, Malaysia.
- Breast Cancer Translational Research Program (BCTRP), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
10
|
Zameer U, Shaikh W. A new era for bladder cancer: Enfortumab vedotin and pembrolizumab milestone approval. TUMORI JOURNAL 2024; 110:295-296. [PMID: 38142292 DOI: 10.1177/03008916231221508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023]
Abstract
Cisplatin-based combos have become first-line treatment regimens in standard of care because of their high overall survival improvement. Despite being the first-line therapy, due to its side effects, roughly half of all patients suffering from Metastatic urothelial cancer are ineligible for it. To address this issue, scientists have been developing highly specific antibody-drug conjugates to address this issue. For locally advanced or metastatic bladder cancer, a combination of Padcev (enfortumab vedotin-ejfv) with pembrolizumab (Keytruda) has been authorized by the FDA as a first-line treatment and has shown promising outcomes in patients with metastatic urothelial carcinoma who are ineligible for cisplatin-based combinations.
Collapse
Affiliation(s)
- Ushna Zameer
- Karachi Medical and Dental College, Karachi City, Sindh
| | - Wajiha Shaikh
- Karachi Medical and Dental College, Karachi City, Sindh
| |
Collapse
|
11
|
Jeon JH, Woo Kim S, Kim YJ, Park JW, Eun Moon J, Beom Lee Y, Yu H, Lee GH, Jin SH, Jeong JH. Synthesis and evaluation of antibody-drug conjugates with high drug-to-antibody ratio using dimaleimide-DM1 as a linker- payload. Bioorg Chem 2024; 149:107504. [PMID: 38850783 DOI: 10.1016/j.bioorg.2024.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
The notable characteristics of recently emerged Antibody-Drug Conjugates (ADCs) encompass the targeting of Human Epidermal growth factor Receptor 2 (HER2) through monoclonal antibodies (mAbs) and a high ratio of drug to antibody (DAR). The achievements of Kadcyla® (T-DM1) and Enhertu® (T-Dxd) have demonstrated that HER2-targeting antibodies, such as trastuzumab, have shown to be competitive in terms of efficacy and price for development. Furthermore, with the arrival of T-Dxd and Trodelvy®, high-DAR (7-8) ADCs, which differ from the moderate DAR (3-4) ADCs that were formerly regarded as conventional, are being acknowledged for their worth. Following this trend of drug development, we endeavored to develop a high-DAR ADC using a straightforward approach involving the utilization of DM1, a highly potent substance, in combination with the widely recognized trastuzumab. To achieve a high DAR, DM1 was conjugated to reduced cysteine through the simple design and synthesis of various dimaleimide linkers with differing lengths. Using LC and MS analysis, we have demonstrated that our synthesis methodology is uncomplicated and efficacious, yielding trastuzumab-based ADCs that exhibit a remarkable degree of uniformity. These ADCs have been experimentally substantiated to exert an inhibitory effect on cancer cells in vitro, thus affirming their value as noteworthy additions to the realm of ADCs.
Collapse
Affiliation(s)
- Joo-Hyun Jeon
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Seo Woo Kim
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Yoon-Jung Kim
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Jang-Woo Park
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Jee Eun Moon
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Yong Beom Lee
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Hana Yu
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Geon-Ho Lee
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Sung-Ha Jin
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea.
| | - Jin-Hyun Jeong
- AbchemBio co., Ltd., D 111, Veritas Hall, Yonsei University, 85 Songdogqahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea; College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea.
| |
Collapse
|
12
|
Weggen JT, Bean R, Hui K, Wendeler M, Hubbuch J. Kinetic models towards an enhanced understanding of diverse ADC conjugation reactions. Front Bioeng Biotechnol 2024; 12:1403644. [PMID: 39070164 PMCID: PMC11274341 DOI: 10.3389/fbioe.2024.1403644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024] Open
Abstract
The conjugation reaction is the central step in the manufacturing process of antibody-drug conjugates (ADCs). This reaction generates a heterogeneous and complex mixture of differently conjugated sub-species depending on the chosen conjugation chemistry. The parametrization of the conjugation reaction through mechanistic kinetic models offers a chance to enhance valuable reaction knowledge and ensure process robustness. This study introduces a versatile modeling framework for the conjugation reaction of cysteine-conjugated ADC modalities-site-specific and interchain disulfide conjugation. Various conjugation kinetics involving different maleimide-functionalized payloads were performed, while controlled gradual payload feeding was employed to decelerate the conjugation, facilitating a more detailed investigation of the reaction mechanism. The kinetic data were analyzed with a reducing reversed phase (RP) chromatography method, that can readily be implemented for the accurate characterization of ADCs with diverse drug-to-antibody ratios, providing the conjugation trajectories of the single chains of the monoclonal antibody (mAb). Possible kinetic models for the conjugation mechanism were then developed and selected based on multiple criteria. When calibrating the established model to kinetics involving different payloads, conjugation rates were determined to be payload-specific. Further conclusions regarding the kinetic comparability across the two modalities could also be derived. One calibrated model was used for an exemplary in silico screening of the initial concentrations offering valuable insights for profound understanding of the conjugation process in ADC development.
Collapse
Affiliation(s)
- Jan Tobias Weggen
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ryan Bean
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Kimberly Hui
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Michaela Wendeler
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
13
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
14
|
Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: Strategies for competitive advancement. Drug Resist Updat 2024; 75:101086. [PMID: 38677200 DOI: 10.1016/j.drup.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel and promising approach in targeted therapy, uniting the specificity of antibodies that recognize specific antigens with payloads, all connected by the stable linker. These conjugates combine the best targeted and cytotoxic therapies, offering the killing effect of precisely targeting specific antigens and the potent cell-killing power of small molecule drugs. The targeted approach minimizes the off-target toxicities associated with the payloads and broadens the therapeutic window, enhancing the efficacy and safety profile of cancer treatments. Within precision oncology, ADCs have garnered significant attention as a cutting-edge research area and have been approved to treat a range of malignant tumors. Correspondingly, the issue of resistance to ADCs has gradually come to the fore. Any dysfunction in the steps leading to the ADCs' action within tumor cells can lead to the development of resistance. A deeper understanding of resistance mechanisms may be crucial for developing novel ADCs and exploring combination therapy strategies, which could further enhance the clinical efficacy of ADCs in cancer treatment. This review outlines the brief historical development and mechanism of ADCs and discusses the impact of their key components on the activity of ADCs. Furthermore, it provides a detailed account of the application of ADCs with various target antigens in cancer therapy, the categorization of potential resistance mechanisms, and the current state of combination therapies. Looking forward, breakthroughs in overcoming technical barriers, selecting differentiated target antigens, and enhancing resistance management and combination therapy strategies will broaden the therapeutic indications for ADCs. These progresses are anticipated to advance cancer treatment and yield benefits for patients.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, State Key Laboratory of Mocelular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
Bardia A, Krop IE, Kogawa T, Juric D, Tolcher AW, Hamilton EP, Mukohara T, Lisberg A, Shimizu T, Spira AI, Tsurutani J, Damodaran S, Papadopoulos KP, Greenberg J, Kobayashi F, Zebger-Gong H, Wong R, Kawasaki Y, Nakamura T, Meric-Bernstam F. Datopotamab Deruxtecan in Advanced or Metastatic HR+/HER2- and Triple-Negative Breast Cancer: Results From the Phase I TROPION-PanTumor01 Study. J Clin Oncol 2024; 42:2281-2294. [PMID: 38652877 PMCID: PMC11210948 DOI: 10.1200/jco.23.01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Datopotamab deruxtecan (Dato-DXd) is an antibody-drug conjugate consisting of a humanized antitrophoblast cell-surface antigen 2 (TROP2) monoclonal antibody linked to a potent, exatecan-derived topoisomerase I inhibitor payload via a plasma-stable, selectively cleavable linker. PATIENTS AND METHODS TROPION-PanTumor01 (ClinicalTrials.gov identifier: NCT03401385) is a phase I, dose-escalation, and dose-expansion study evaluating Dato-DXd in patients with previously treated solid tumors. The primary study objective was to assess the safety and tolerability of Dato-DXd. Secondary objectives included evaluation of antitumor activity and pharmacokinetics. Results from patients with advanced/metastatic hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2-) breast cancer (BC) or triple-negative BC (TNBC) are reported. RESULTS At data cutoff (July 22, 2022), 85 patients (HR+/HER2- BC = 41, and TNBC = 44) had received Dato-DXd. The objective response rate by blinded independent central review was 26.8% (95% CI, 14.2 to 42.9) and 31.8% (95% CI, 18.6 to 47.6) for patients with HR+/HER2- BC and TNBC, respectively. The median duration of response was not evaluable in the HR+/HER2- BC cohort and 16.8 months in the TNBC cohort. The median progression-free survival in patients with HR+/HER2- BC and TNBC was 8.3 and 4.4 months, respectively. All-cause treatment-emergent adverse events (TEAEs; any grade, grade ≥3) were observed in 100% and 41.5% of patients with HR+/HER2- BC and 100% and 52.3% of patients with TNBC. Stomatitis was the most common TEAE (any grade, grade ≥3) in both HR+/HER2- BC (82.9%, 9.8%) and TNBC (72.7%, 11.4%) cohorts. CONCLUSION In patients with heavily pretreated advanced HR+/HER2- BC and TNBC, Dato-DXd demonstrated promising clinical activity and a manageable safety profile. Dato-DXd is currently being evaluated in phase III studies.
Collapse
MESH Headings
- Humans
- Female
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/pathology
- Middle Aged
- Aged
- Immunoconjugates/therapeutic use
- Immunoconjugates/adverse effects
- Immunoconjugates/pharmacokinetics
- Adult
- Receptor, ErbB-2/metabolism
- Camptothecin/analogs & derivatives
- Camptothecin/therapeutic use
- Receptors, Estrogen/metabolism
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Receptors, Progesterone/metabolism
- Antigens, Neoplasm
- Cell Adhesion Molecules/metabolism
- Trastuzumab
Collapse
Affiliation(s)
- Aditya Bardia
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Ian E. Krop
- Yale Cancer Center, New Haven, CT
- Dana-Farber Cancer Institute, Boston, MA
| | - Takahiro Kogawa
- Department of Advanced Medical Development, Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Dejan Juric
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Anthony W. Tolcher
- South Texas Accelerated Research Therapeutics, San Antonio, TX
- NEXT Oncology, San Antonio, TX
- Texas Oncology, San Antonio, TX
| | - Erika P. Hamilton
- Sarah Cannon Research Institute, Nashville, TN
- Tennessee Oncology, PLLC, Nashville, TN
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Aaron Lisberg
- Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA
| | - Toshio Shimizu
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
- Department of Pulmonary Medicine and Medical Oncology, Wakayama Medical University Hospital, Wakayama, Japan
| | | | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, Tokyo, Japan
| | - Senthil Damodaran
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Jonathan Greenberg
- Global Oncology Clinical Development, Daiichi Sankyo, Inc, Basking Ridge, NJ
- Global Oncology Clinical Development, Daiichi Sankyo Europe GmbH, Munich, Germany
| | | | - Hong Zebger-Gong
- Global Oncology Clinical Development, Daiichi Sankyo Europe GmbH, Munich, Germany
| | - Rie Wong
- Global Oncology Clinical Development, Daiichi Sankyo, Co, Ltd, Tokyo, Japan
| | - Yui Kawasaki
- Global Oncology Clinical Development, Daiichi Sankyo, Inc, Basking Ridge, NJ
| | | | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
16
|
Kwon WA, Lee SY, Jeong TY, Kim HH, Lee MK. Antibody-Drug Conjugates in Urothelial Cancer: From Scientific Rationale to Clinical Development. Cancers (Basel) 2024; 16:2420. [PMID: 39001482 PMCID: PMC11240765 DOI: 10.3390/cancers16132420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have been a significant advancement in cancer therapy, particularly for urothelial cancer (UC). These innovative treatments, originally developed for hematological malignancies, use target-specific monoclonal antibodies linked to potent cytotoxic agents. This rational drug design efficiently delivers cancer cell-killing agents to cells expressing specific surface proteins, which are abundant in UC owing to their high antigen expression. UC is an ideal candidate for ADC therapy, as it enhances on-target efficacy while mitigating systemic toxicity. In recent years, considerable progress has been made in understanding the biology and mechanisms of tumor progression in UC. However, despite the introduction of immune checkpoint inhibitors, advanced UC is characterized by rapid progression and poor survival rates. Targeted therapies that have been developed include the anti-nectin 4 ADC enfortumab vedotin and the fibroblast growth factor receptor inhibitor erdafitinib. Enfortumab vedotin has shown efficacy in prospective studies in patients with advanced UC, alone and in combination with pembrolizumab. The anti-Trop-2 ADC sacituzumab govitecan has also demonstrated effectiveness in single-armed studies. This review highlights the mechanism of action of ADCs, their application in mono- and combination therapies, primary mechanisms of resistance, and future perspectives for their clinical use in UC treatment. ADCs have proven to be an increasingly vital component of the therapeutic landscape for urothelial carcinoma, filling a gap in the treatment of this progressive disease.
Collapse
Affiliation(s)
- Whi-An Kwon
- Department of Urology, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| | - Seo-Yeon Lee
- Department of Urology, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| | - Tae Yoong Jeong
- Department of Urology, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| | - Hyeon Hoe Kim
- Department of Urology, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| | - Min-Kyung Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| |
Collapse
|
17
|
Chis AA, Dobrea CM, Arseniu AM, Frum A, Rus LL, Cormos G, Georgescu C, Morgovan C, Butuca A, Gligor FG, Vonica-Tincu AL. Antibody-Drug Conjugates-Evolution and Perspectives. Int J Mol Sci 2024; 25:6969. [PMID: 39000079 PMCID: PMC11241239 DOI: 10.3390/ijms25136969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Antineoplastic therapy is one of the main research themes of this century. Modern approaches have been implemented to target and heighten the effect of cytostatic drugs on tumors and diminish their general/unspecific toxicity. In this context, antibody-drug conjugates (ADCs) represent a promising and successful strategy. The aim of this review was to assess different aspects regarding ADCs. They were presented from a chemical and a pharmacological perspective and aspects like structure, conjugation and development particularities alongside effects, clinical trials, safety issues and perspectives and challenges for future use of these drugs were discussed. Representative examples include but are not limited to the following main structural components of ADCs: monoclonal antibodies (trastuzumab, brentuximab), linkers (pH-sensitive, reduction-sensitive, peptide-based, phosphate-based, and others), and payloads (doxorubicin, emtansine, ravtansine, calicheamicin). Regarding pharmacotherapy success, the high effectiveness expectation associated with ADC treatment is supported by the large number of ongoing clinical trials. Major aspects such as development strategies are first discussed, advantages and disadvantages, safety and efficacy, offering a retrospective insight on the subject. The second part of the review is prospective, focusing on various plans to overcome the previously identified difficulties.
Collapse
Affiliation(s)
| | | | - Anca Maria Arseniu
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Adina Frum
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Luca-Liviu Rus
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Gabriela Cormos
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Cecilia Georgescu
- Faculty of Agriculture Science, Food Industry and Environmental Protection, "Lucian Blaga" University of Sibiu, 550012 Sibiu, Romania
| | - Claudiu Morgovan
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | - Anca Butuca
- Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania
| | | | | |
Collapse
|
18
|
Khadela A, Megha K, Shah VB, Soni S, Shah AC, Mistry H, Bhatt S, Merja M. Exploring the Potential of Antibody-Drug Conjugates in Targeting Non-small Cell Lung Cancer Biomarkers. Clin Med Insights Oncol 2024; 18:11795549241260534. [PMID: 38911453 PMCID: PMC11193349 DOI: 10.1177/11795549241260534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
Antibody-drug conjugates (ADCs), combining the cytotoxicity of the drug payload with the specificity of monoclonal antibodies, are one of the rapidly evolving classes of anti-cancer agents. These agents have been successfully incorporated into the treatment paradigm of many malignancies, including non-small cell lung cancer (NSCLC). The NSCLC is the most prevalent subtype of lung cancer, having a considerable burden on the cancer-related mortality and morbidity rates globally. Several ADC molecules are currently approved by the Food and Drug Administration (FDA) to be used in patients with NSCLC. However, the successful management of NSCLC patients using these agents was met with several challenges, including the development of resistance and toxicities. These shortcomings resulted in the exploration of novel therapeutic targets that can be targeted by the ADCs. This review aims to explore the recently identified ADC targets along with their oncologic mechanisms. The ADC molecules targeting these biomarkers are further discussed along with the evidence from clinical trials.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Kaivalya Megha
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Vraj B Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shruti Soni
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Aayushi C Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Hetvi Mistry
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shelly Bhatt
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Manthan Merja
- Department of Clinical Oncology, Starlit Cancer Centre, Kothiya Hospital, Ahmedabad, Gujarat, India
| |
Collapse
|
19
|
Bai H, Huang W, Li J, Ji Y, He S, Hu H. Enhancing anticancer treatment: Development of cRGD-Conjugated F-OH-Evo prodrugs for targeted delivery. Bioorg Med Chem 2024; 107:117759. [PMID: 38795572 DOI: 10.1016/j.bmc.2024.117759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Small molecule drugs sourced from natural products are pivotal for novel therapeutic discoveries. However, their clinical deployment is often impeded by non-specific activity and severe adverse effects. This study focused on 3-fluoro-10-hydroxy-Evodiamine (F-OH-Evo), a potent derivative of Evodiamine, whose development is curtailed due to suboptimal tumor selectivity and heightened cytotoxicity. By harnessing the remarkable stability, specificity, and αvβ3 integrin affinity of c(RGDFK), a novel prodrug by conjugating F-OH-Evo with cRGD was synthesized. This innovative prodrug substantially enhanced the tumor-specific targeting of F-OH-Evo and improved the anti-tumor activities. Among them, compound 3c demonstrated the best selective inhibitory activity toward U87 cancer cells in vitro. It selectively enterd U87 cells by binding to αvβ3 integrin, releasing the parent molecule under the dual response of ROS and GSH to exert inhibitory activity on topo I. The results highlight the potential of cRGD-conjugated prodrugs in targeted cancer therapy. This approach signifies a significant advancement in developing safer and more effective chemotherapy drugs, emphasizing the role of prodrug strategies in overcoming the limitations of traditional cancer treatments.
Collapse
Affiliation(s)
- Haohao Bai
- Institute of Translational Medicine, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Wenjing Huang
- Institute of Translational Medicine, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jinqiu Li
- Institute of Translational Medicine, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Yajing Ji
- Institute of Translational Medicine, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Shipeng He
- Institute of Translational Medicine, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China.
| | - Honggang Hu
- Institute of Translational Medicine, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China.
| |
Collapse
|
20
|
Morelli F, Matis S, Benelli R, Salvini L, Zocchi MR, Poggi A. Antibody-Drug Conjugate Made of Zoledronic Acid and the Anti-CD30 Brentuximab-Vedotin Exert Anti-Lymphoma and Immunostimulating Effects. Cells 2024; 13:862. [PMID: 38786084 PMCID: PMC11119185 DOI: 10.3390/cells13100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Relevant advances have been made in the management of relapsed/refractory (r/r) Hodgkin Lymphomas (HL) with the use of the anti-CD30 antibody-drug conjugate (ADC) brentuximab-vedotin (Bre-Ved). Unfortunately, most patients eventually progress despite the excellent response rates and tolerability. In this report, we describe an ADC composed of the aminobisphosphonate zoledronic acid (ZA) conjugated to Bre-Ved by binding the free amino groups of this antibody with the phosphoric group of ZA. Liquid chromatography-mass spectrometry, inductively coupled plasma-mass spectrometry, and matrix-assisted laser desorption ionization-mass spectrometry analyses confirmed the covalent linkage between the antibody and ZA. The novel ADC has been tested for its reactivity with the HL/CD30+ lymphoblastoid cell lines (KMH2, L428, L540, HS445, and RPMI6666), showing a better titration than native Bre-Ved. Once the HL-cells are entered, the ADC co-localizes with the lysosomal LAMP1 in the intracellular vesicles. Also, this ADC exerted a stronger anti-proliferative and pro-apoptotic (about one log fold) effect on HL-cell proliferation compared to the native antibody Bre-Ved. Eventually, Bre-Ved-ZA ADC, in contrast with the native antibody, can trigger the proliferation and activation of cytolytic activity of effector-memory Vδ2 T-lymphocytes against HL-cell lines. These findings may support the potential use of this ADC in the management of r/r HL.
Collapse
Affiliation(s)
- Feliciana Morelli
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.M.); (S.M.); (R.B.)
| | - Serena Matis
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.M.); (S.M.); (R.B.)
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.M.); (S.M.); (R.B.)
| | - Laura Salvini
- Fondazione Toscana Life Sciences, Technology Facilities and Mass Spectrometry Unit, 53100 Siena, Italy;
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.M.); (S.M.); (R.B.)
| |
Collapse
|
21
|
Taylor KS, McMonagle MM, Guy SC, Human-McKinnon AM, Asamizu S, Fletcher HJ, Davis BW, Suyama TL. Albumin-ruthenium catalyst conjugate for bio-orthogonal uncaging of alloc group. Org Biomol Chem 2024; 22:2992-3000. [PMID: 38526322 DOI: 10.1039/d4ob00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The employment of antibodies as a targeted drug delivery vehicle has proven successful which is exemplified by the emergence of antibody-drug conjugates (ADCs). However, ADCs are not without their shortcomings. Improvements may be made to the ADC platform by decoupling the cytotoxic drug from the delivery vehicle and conjugating an organometallic catalyst in its place. The resulting protein-metal catalyst conjugate was designed to uncage the masked cytotoxin administered as a separate entity. Macropinocytosis of albumin by cancerous cells suggests the potential of albumin acting as the tumor-targeting delivery vehicle. Herein reported are the first preparation and demonstration of ruthenium catalysts with cyclopentadienyl and quinoline-based ligands conjugated to albumin. The effective uncaging abilities were demonstrated on allyloxy carbamate (alloc)-protected rhodamine 110 and doxorubicin, providing a promising catalytic scaffold for the advancement of selective drug delivery methods in the future.
Collapse
Affiliation(s)
- Kimberly S Taylor
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Madison M McMonagle
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Schaelee C Guy
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Ariana M Human-McKinnon
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Shumpei Asamizu
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Heidi J Fletcher
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Bradley W Davis
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Takashi L Suyama
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| |
Collapse
|
22
|
Li J, Jiang Z. Antibody drug conjugates in breast cancer in China: Highlights, challenges, and prospects. Cancer 2024; 130:1371-1377. [PMID: 37921976 DOI: 10.1002/cncr.35093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023]
Abstract
Antibody drug conjugates (ADCs) are novel drugs that exert specific cytotoxicity against tumor cells. China approved T-Dxd in May 2023, and their introduction has changed the nation's clinical practice. Although more than 700 ADCs are being investigated worldwide, the challenges that remain in antibody engineering, drug discovery, safety management, resistance, drug selection, and sequencing hinder the further promotion and application of ADCs. Experts in China have discussed the several critical concerns related to clinical practice since 2022. Here, the authors conducted a review of ADCs and then discussed several ADCs explored in China. This study proposes several solutions and strategies to maximize the potential benefit that ADCs can provide to patients with breast cancer.
Collapse
Affiliation(s)
- Jianbin Li
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Zefei Jiang
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Heist RS, Sands J, Bardia A, Shimizu T, Lisberg A, Krop I, Yamamoto N, Kogawa T, Al-Hashimi S, Fung SSM, Galor A, Pisetzky F, Basak P, Lau C, Meric-Bernstam F. Clinical management, monitoring, and prophylaxis of adverse events of special interest associated with datopotamab deruxtecan. Cancer Treat Rev 2024; 125:102720. [PMID: 38502995 DOI: 10.1016/j.ctrv.2024.102720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Antibody drug conjugates (ADCs) are an emerging class of treatments designed to improve efficacy and decrease toxicity compared with other systemic therapies through the selective delivery of cytotoxic agents to tumor cells. Datopotamab deruxtecan (Dato-DXd) is a novel ADC comprising a topoisomerase I inhibitor payload and a monoclonal antibody directed to trophoblast cell-surface antigen 2 (TROP2), a protein that is broadly expressed in several types of solid tumors. Dato-DXd is being investigated across multiple solid tumor indications. In the ongoing, first-in-human TROPION-PanTumor01 phase I study (ClinicalTrials.gov: NCT03401385), encouraging and durable antitumor activity and a manageable safety profile was demonstrated in patients with advanced/metastatic hormone receptor-positive/human epidermal growth factor receptor2-negative breast cancer (HR+/HER2- BC), triple-negative breast cancer (TNBC), and non-small cell lung cancer (NSCLC). Improved understanding of the adverse events (AEs) that are associated with Dato-DXd and their optimal management is essential to ensure safe and successful administration. Interstitial lung disease/pneumonitis, infusion-related reactions, oral mucositis/stomatitis, and ocular surface events have been identified as AEs of special interest (AESIs) for which appropriate prevention, monitoring, and management is essential. This article summarizes the incidence of AESIs among patients with HR+/HER2- BC, TNBC, and NSCLC reported in TROPION-PanTumor01. We report our recommendations for AESI prophylaxis, early detection, and management, using experience gained from treating AESIs that occur with Dato-DXd in clinical trials.
Collapse
Affiliation(s)
- Rebecca S Heist
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Harvard University, Boston, MA, USA.
| | - Jacob Sands
- Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aditya Bardia
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Toshio Shimizu
- Department of Pulmonary Medicine and Medical Oncology, Wakayama Medical University Hospital, Wakayama Medical University Graduate School of Medicine, Wakayama, Japan
| | - Aaron Lisberg
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ian Krop
- Yale Cancer Center, New Haven, CT, USA
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Kogawa
- Department of Advanced Medical Development, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Saba Al-Hashimi
- Department of Ophthalmology, UCLA Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Simon S M Fung
- Department of Ophthalmology, UCLA Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, FL, USA; Research Services, Miami Veterans Affairs Medical Center, Miami, FL, USA
| | - Francesca Pisetzky
- Clinical Safety and Pharmacovigilence, Daiichi Sankyo, Inc., Schiphol-Rijk, The Netherlands
| | - Priyanka Basak
- Clinical Safety and Pharmacovigilance, Daiichi Sankyo, Inc., Basking Ridge, NJ, USA
| | - Cindy Lau
- Clinical Safety and Pharmacovigilance, Daiichi Sankyo, Inc., Basking Ridge, NJ, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| |
Collapse
|
24
|
Philippova J, Shevchenko J, Sennikov S. GD2-targeting therapy: a comparative analysis of approaches and promising directions. Front Immunol 2024; 15:1371345. [PMID: 38558810 PMCID: PMC10979305 DOI: 10.3389/fimmu.2024.1371345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αβ T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.
Collapse
Affiliation(s)
| | | | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
25
|
Chirravur P. Unsung oral toxicities of antibody drug conjugate. Oral Oncol 2024; 150:106692. [PMID: 38277975 DOI: 10.1016/j.oraloncology.2024.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Affiliation(s)
- Prazwala Chirravur
- Oral Medicine, Oral and Maxillofacial Diagnostic Sciences, UCONN Health, 263 Farmington Avenue, Farmington, CT 06030, United States; Carole and Ray Neag Comprehensive Cancer Center, 263 Farmington Avenue, Farmington, CT 06030, United States.
| |
Collapse
|
26
|
Li M, Zhao X, Yu C, Wang L. Antibody-Drug Conjugate Overview: a State-of-the-art Manufacturing Process and Control Strategy. Pharm Res 2024; 41:419-440. [PMID: 38366236 DOI: 10.1007/s11095-023-03649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/16/2023] [Indexed: 02/18/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise an antibody, linker, and drug, which direct their highly potent small molecule drugs to target tumor cells via specific binding between the antibody and surface antigens. The antibody, linker, and drug should be properly designed or selected to achieve the desired efficacy while minimizing off-target toxicity. With a unique and complex structure, there is inherent heterogeneity introduced by product-related variations and the manufacturing process. Here this review primarily covers recent key advances in ADC history, clinical development status, molecule design, manufacturing processes, and quality control. The manufacturing process, especially the conjugation process, should be carefully developed, characterized, validated, and controlled throughout its lifecycle. Quality control is another key element to ensure product quality and patient safety. A patient-centric strategy has been well recognized and adopted by the pharmaceutical industry for therapeutic proteins, and has been successfully implemented for ADCs as well, to ensure that ADC products maintain their quality until the end of their shelf life. Deep product understanding and process knowledge defines attribute testing strategies (ATS). Quality by design (QbD) is a powerful approach for process and product development, and for defining an overall control strategy. Finally, we summarize the current challenges on ADC development and provide some perspectives that may help to give related directions and trigger more cross-functional research to surmount those challenges.
Collapse
Affiliation(s)
- Meng Li
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xueyu Zhao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chuanfei Yu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China.
| |
Collapse
|
27
|
Li Y, Su J, Tan S, Luo Y, Zhang L. Research progress on novel antibody drug conjugates in cancer therapy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:296-304. [PMID: 38755726 PMCID: PMC11103054 DOI: 10.11817/j.issn.1672-7347.2024.230418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 05/18/2024]
Abstract
Traditional antibody drug conjugates (ADC) combine monoclonal antibodies with cytotoxic drugs to accurately strike cancer cells, but there are still many shortcomings in stability, targeting, efficacy, and safety. Novel ADC, such as bi-specific, site-specific, dual-payload, and pro-drug type ADC, can be optimized by simultaneously binding 2 different antigens or epitopes, selecting more stable linkers, coupling with specific amino acid sites of antibodies, carrying different drug payloads, and adopting prodrug strategies, while retaining the characteristics of traditional ADC. Significantly improving the stability, targeting, efficacy and safety of drugs can better meet the needs of clinical treatment. Novel ADC will play a more important role in cancer treatment in the future. Discussing the progress of novel ADC in cancer treatment and analyzing their advantages and challenges can provide theoretical support for the development of anti-cancer strategies and provide directions for drug research and development.
Collapse
Affiliation(s)
- Yuning Li
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha 410013.
- College of Life Science and Health, Hunan University of Science and Technology, Xiangtan Hunan 411201, China.
| | - Jialin Su
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha 410013
- College of Life Science and Health, Hunan University of Science and Technology, Xiangtan Hunan 411201, China
| | - Shuhua Tan
- College of Life Science and Health, Hunan University of Science and Technology, Xiangtan Hunan 411201, China
| | - Yongzhong Luo
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha 410013
| | - Lemeng Zhang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha 410013.
| |
Collapse
|
28
|
Choi Y, Choi Y, Hong S. Recent Technological and Intellectual Property Trends in Antibody-Drug Conjugate Research. Pharmaceutics 2024; 16:221. [PMID: 38399275 PMCID: PMC10892729 DOI: 10.3390/pharmaceutics16020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Antibody-drug conjugate (ADC) therapy, an advanced therapeutic technology comprising antibodies, chemical linkers, and cytotoxic payloads, addresses the limitations of traditional chemotherapy. This study explores key elements of ADC therapy, focusing on antibody development, linker design, and cytotoxic payload delivery. The global rise in cancer incidence has driven increased investment in anticancer agents, resulting in significant growth in the ADC therapy market. Over the past two decades, notable progress has been made, with approvals for 14 ADC treatments targeting various cancers by 2022. Diverse ADC therapies for hematologic malignancies and solid tumors have emerged, with numerous candidates currently undergoing clinical trials. Recent years have seen a noteworthy increase in ADC therapy clinical trials, marked by the initiation of numerous new therapies in 2022. Research and development, coupled with patent applications, have intensified, notably from major companies like Pfizer Inc. (New York, NY, USA), AbbVie Pharmaceuticals Inc. (USA), Regeneron Pharmaceuticals Inc. (Tarrytown, NY, USA), and Seagen Inc. (Bothell, WA, USA). While ADC therapy holds great promise in anticancer treatment, challenges persist, including premature payload release and immune-related side effects. Ongoing research and innovation are crucial for advancing ADC therapy. Future developments may include novel conjugation methods, stable linker designs, efficient payload delivery technologies, and integration with nanotechnology, driving the evolution of ADC therapy in anticancer treatment.
Collapse
Affiliation(s)
- Youngbo Choi
- Department of Safety Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea;
- Department of BigData, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Youbeen Choi
- Department of Biotechnology, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea;
| | - Surin Hong
- Department of Biotechnology, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea;
| |
Collapse
|
29
|
Liu X, Cheng Y, Mu Y, Zhang Z, Tian D, Liu Y, Hu X, Wen T. Diverse drug delivery systems for the enhancement of cancer immunotherapy: an overview. Front Immunol 2024; 15:1328145. [PMID: 38298192 PMCID: PMC10828056 DOI: 10.3389/fimmu.2024.1328145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Despite the clear benefits demonstrated by immunotherapy, there is still an inevitable off-target effect resulting in serious adverse immune reactions. In recent years, the research and development of Drug Delivery System (DDS) has received increased prominence. In decades of development, DDS has demonstrated the ability to deliver drugs in a precisely targeted manner to mitigate side effects and has the advantages of flexible control of drug release, improved pharmacokinetics, and drug distribution. Therefore, we consider that combining cancer immunotherapy with DDS can enhance the anti-tumor ability. In this paper, we provide an overview of the latest drug delivery strategies in cancer immunotherapy and briefly introduce the characteristics of DDS based on nano-carriers (liposomes, polymer nano-micelles, mesoporous silica, extracellular vesicles, etc.) and coupling technology (ADCs, PDCs and targeted protein degradation). Our aim is to show readers a variety of drug delivery platforms under different immune mechanisms, and analyze their advantages and limitations, to provide more superior and accurate targeting strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Xu Liu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Cheng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yao Mu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | | | - Dan Tian
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yunpeng Liu
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ti Wen
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
30
|
Cong Y, Devoogdt N, Lambin P, Dubois LJ, Yaromina A. Promising Diagnostic and Therapeutic Approaches Based on VHHs for Cancer Management. Cancers (Basel) 2024; 16:371. [PMID: 38254860 PMCID: PMC10814765 DOI: 10.3390/cancers16020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of the distinctive structure of heavy chain-only antibodies in species belonging to the Camelidae family has elicited significant interest in their variable antigen binding domain (VHH) and gained attention for various applications, such as cancer diagnosis and treatment. This article presents an overview of the characteristics, advantages, and disadvantages of VHHs as compared to conventional antibodies, and their usage in diverse applications. The singular properties of VHHs are explained, and several strategies that can augment their utility are outlined. The preclinical studies illustrating the diagnostic and therapeutic efficacy of distinct VHHs in diverse formats against solid cancers are summarized, and an overview of the clinical trials assessing VHH-based agents in oncology is provided. These investigations demonstrate the enormous potential of VHHs for medical research and healthcare.
Collapse
Affiliation(s)
- Ying Cong
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
| | - Nick Devoogdt
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
| |
Collapse
|
31
|
Zhou J, Xie Z, Wang J, Zeng Z, Hu Z, Zhong L, Yang Q, Shi W, Qian H. Design, synthesis and bioactivity evaluation of novel fusion peptides and their CPT conjugates inducing effective anti-tumor responses on HER2 positive tumors. Eur J Med Chem 2024; 264:116032. [PMID: 38104378 DOI: 10.1016/j.ejmech.2023.116032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) represents an ideal target for antibody drug development, abnormal expression of the HER2 gene is associated with multiple tumor types. Pertuzumab, as the first monoclonal antibody inhibitor of HER2 dimerization, has been FDA-approved for HER2-positive patients. In order to enhance the activity of HER2-targeted peptide-drug conjugates (PDCs) developed based on pertuzumab, a novel class of conjugates 1-9 was designed and synthesized by fusing the N-terminal peptide sequence of the second mitochondria-derived activator of caspases (SMAC) with P1, followed by conjugation with CPT molecules. Compound 4 exhibited excellent in vitro anti-tumor activity across the three HER2-positive cell lines, comparable to the activity of CPT. Apoptosis induction assays indicated that the synergistic effect of the SMAC sequence enhanced the pro-apoptotic activity of the conjugate. Western Blot analysis and Caspase activity studies validated the mechanism through which SMAC peptides, in synergy with CPT, enhance the activity of PDCs. In vivo studies demonstrated that compound 4 possesses superior anti-tumor activity compared to CPT and can effectively mitigate potential renal toxicity associated with free SMAC peptides. In conclusion, conjugate 4 exhibited excellent anti-tumor activity both in vitro and in vivo, offering potential for further development as a novel peptide-conjugated drug.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zhancheng Xie
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jialing Wang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zeqi Zeng
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zhipeng Hu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Li Zhong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Qimeng Yang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| |
Collapse
|
32
|
Shen L, Sun X, Chen Z, Guo Y, Shen Z, Song Y, Xin W, Ding H, Ma X, Xu W, Zhou W, Che J, Tan L, Chen L, Chen S, Dong X, Fang L, Zhu F. ADCdb: the database of antibody-drug conjugates. Nucleic Acids Res 2024; 52:D1097-D1109. [PMID: 37831118 PMCID: PMC10768060 DOI: 10.1093/nar/gkad831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a class of innovative biopharmaceutical drugs, which, via their antibody (mAb) component, deliver and release their potent warhead (a.k.a. payload) at the disease site, thereby simultaneously improving the efficacy of delivered therapy and reducing its off-target toxicity. To design ADCs of promising efficacy, it is crucial to have the critical data of pharma-information and biological activities for each ADC. However, no such database has been constructed yet. In this study, a database named ADCdb focusing on providing ADC information (especially its pharma-information and biological activities) from multiple perspectives was thus developed. Particularly, a total of 6572 ADCs (359 approved by FDA or in clinical trial pipeline, 501 in preclinical test, 819 with in-vivo testing data, 1868 with cell line/target testing data, 3025 without in-vivo/cell line/target testing data) together with their explicit pharma-information was collected and provided. Moreover, a total of 9171 literature-reported activities were discovered, which were identified from diverse clinical trial pipelines, model organisms, patient/cell-derived xenograft models, etc. Due to the significance of ADCs and their relevant data, this new database was expected to attract broad interests from diverse research fields of current biopharmaceutical drug discovery. The ADCdb is now publicly accessible at: https://idrblab.org/adcdb/.
Collapse
Affiliation(s)
- Liteng Shen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Guo
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zheyuan Shen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Song
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wenxiu Xin
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
| | - Haiying Ding
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
| | - Xinyue Ma
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Weiben Xu
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wanying Zhou
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lili Tan
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Liangsheng Chen
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Siqi Chen
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310005, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
33
|
Makowski EK, Wang T, Zupancic JM, Huang J, Wu L, Schardt JS, De Groot AS, Elkins SL, Martin WD, Tessier PM. Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning. Nat Biomed Eng 2024; 8:45-56. [PMID: 37666923 PMCID: PMC10842909 DOI: 10.1038/s41551-023-01074-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/29/2023] [Indexed: 09/06/2023]
Abstract
Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their corresponding viscosity. Yet identifying antibody variants with optimal combinations of these three types of interactions is challenging. Here we show that interpretable machine-learning classifiers, leveraging antibody structural features descriptive of their variable regions and trained on experimental data for a panel of 80 clinical-stage monoclonal antibodies, can identify antibodies with optimal combinations of low off-target binding in a common physiological-solution condition and low self-association in a common antibody-formulation condition. For three clinical-stage antibodies with suboptimal combinations of off-target binding and self-association, the classifiers predicted variable-region mutations that optimized non-affinity interactions while maintaining high-affinity antibody-antigen interactions. Interpretable machine-learning models may facilitate the optimization of antibody candidates for therapeutic applications.
Collapse
Affiliation(s)
- Emily K Makowski
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tiexin Wang
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer M Zupancic
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jie Huang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Lina Wu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - John S Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Peter M Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Mukai K, Cost R, Zhang XS, Condiff E, Cotton J, Liu X, Boudanova E, Niebel B, Piepenhagen P, Cai X, Park A, Zhou Q. Targeted protein degradation through site-specific antibody conjugation with mannose 6-phosphate glycan. MAbs 2024; 16:2415333. [PMID: 39434219 PMCID: PMC11497922 DOI: 10.1080/19420862.2024.2415333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent developments in targeted protein degradation have provided great opportunities to eliminating extracellular protein targets using potential therapies with unique mechanisms of action and pharmacology. Among them, Lysosome-Targeting Chimeras (LYTACs) acting through mannose 6-phosphate receptor (M6PR) have been shown to facilitate degradation of several soluble and membrane-associated proteins in lysosomes with high efficiency. Herein we have developed a novel site-specific antibody conjugation approach to generate antibody mannose 6-phosphate (M6P) conjugates. The method uses a high affinity synthetic M6P glycan, bisM6P, that is coupled to an Fc-engineered antibody NNAS. This mutant without any effector function was generated by switching the native glycosylation site from position 297 to 298 converting non-sialylated structures to highly sialylated N-glycans. The sialic acid of the glycans attached to Asn298 in the engineered antibody was selectively conjugated to bisM6P without chemoenzymatic modification, which is often used for site-specific antibody conjugation through glycans. The conjugate is mainly homogeneous by analysis using mass spectrometry, typically with one or two glycans coupled. The M6P-conjugated antibody against a protein of interest (POI) efficiently internalized targeted soluble proteins, such as human tumor necrosis factor (TNF), in both cancer cell lines and human immune cells, through the endo-lysosomal pathway as demonstrated by confocal microscopy and flow cytometry. TNF in cell culture media was significantly depleted after the cells were incubated with the M6P-conjugated antibody. TNF internalization is mediated through M6PR, and it is correlated well with cell surface expression of cation-independent M6PR (CI-MPR) in immune cells. A significant amount of CI-MPR remains on the cell surface, while internalized TNF is degraded in lysosomes. Thus, the antibody-M6P conjugate is highly efficient in inducing internalization and subsequent lysosome-mediated protein degradation. Our platform provides a unique method for producing biologics-based degraders that may be used to treat diseases through event-driven pharmacology, thereby addressing unmet medical needs.
Collapse
Affiliation(s)
- Kaori Mukai
- Immunology & Inflammation Research, Sanofi, Cambridge, MA, USA
| | - Robert Cost
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | - Xin Sheen Zhang
- Translational In Vivo Models Research, Sanofi, Cambridge, MA, USA
| | - Emily Condiff
- Translational In Vivo Models Research, Sanofi, Cambridge, MA, USA
| | | | - Xiaohua Liu
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | | | - Björn Niebel
- Large Molecules Research, Sanofi R&D Ghent, Ghent, Belgium
| | | | - Xinming Cai
- Immunology & Inflammation Research, Sanofi, Cambridge, MA, USA
| | - Anna Park
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | - Qun Zhou
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| |
Collapse
|
35
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
36
|
Sun LP, Bai WQ, Zhou DD, Wu XF, Zhang LW, Cui AL, Xie ZH, Gao RJ, Zhen YS, Li ZR, Miao QF. hIMB1636-MMAE, a Novel TROP2-Targeting Antibody-Drug Conjugate Exerting Potent Antitumor Efficacy in Pancreatic Cancer. J Med Chem 2023; 66:14700-14715. [PMID: 37883180 DOI: 10.1021/acs.jmedchem.3c01210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Herein, we first prepared a novel anti-TROP2 antibody-drug conjugate (ADC) hIMB1636-MMAE using hIMB1636 antibody chemically coupled to monomethyl auristatin E (MMAE) via a Valine-Citrulline linker and then reported its characteristics and antitumor activity. With a DAR of 3.92, it binds specifically to both recombinant antigen (KD ∼ 0.687 nM) and cancer cells and could be internalized by target cells and selectively kill them with IC50 values at nanomolar/subnanomolar levels by inducing apoptosis and G2/M phase arrest. hIMB1636-MMAE also inhibited cell migration, induced ADCC effects, and had bystander effects. It displayed significant tumor-targeting ability and excellent tumor-suppressive effects in vivo, resulting in 5/8 tumor elimination at 12 mg/kg in the T3M4 xenograft model or complete tumor disappearance at 10 mg/kg in BxPc-3 xenografts in nude mice. Its half-life in mice was about 87 h. These data suggested that hIMB1636-MMAE was a promising candidate for the treatment of pancreatic cancer with TROP2 overexpression.
Collapse
Affiliation(s)
- Li-Ping Sun
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Wei-Qi Bai
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Dan-Dan Zhou
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Xiao-Fan Wu
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Lan-Wen Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - A-Long Cui
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Zi-Hui Xie
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Rui-Juan Gao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Yong-Su Zhen
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Zhuo-Rong Li
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Qing-Fang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| |
Collapse
|
37
|
Huet S, Zeisser Labouebe M, Castro R, Jacquot P, Pedrault J, Viollet S, Van Simaeys G, Doumont G, Larbanoix L, Zindy E, Cunha AE, Scapozza L, Cinier M. Targeted Nanofitin-drug Conjugates Achieve Efficient Tumor Delivery and Therapeutic Effect in an EGFRpos Mouse Xenograft Model. Mol Cancer Ther 2023; 22:1343-1351. [PMID: 37578807 PMCID: PMC10618730 DOI: 10.1158/1535-7163.mct-22-0805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/13/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Adjusting the molecular size, the valency and the pharmacokinetics of drug conjugates are as many leverages to improve their therapeutic window, notably by affecting tumor penetration, renal clearance, and short systemic exposure. In that regard, small tumor-targeting ligands are gaining attention. In this study, we demonstrate the benefits of the small Nanofitin alternative scaffolds (7 kDa) as selective tumor-targeting modules for the generation of drug conjugates, focusing on Nanofitins B10 and D8 directed against the EGFR. Owing to their small size and monovalent format, the two Nanofitins displayed a fast and deep tumor penetration in EGFR-positive A431 xenografts in BALB/c nude mice after intravenous administration, yielding to a targeting of respectively 67.9% ± 14.1 and 98.9% ± 0.7 of the tumor cells as demonstrated by IHC. Conjugation with the monomethyl auristatin E toxin provided homogeneous Nanofitin-drug conjugates, with an overall yield of ≥97%, for in vivo assessment in a curative xenograft model using bioluminescent, EGFR-positive, A431 cells in BALB/c nude mice. Internalization was found critical for efficient release of the toxin. Hence, the intravenous administration of the D8-based construct showed significant antitumor effect in vivo as determined by monitoring tumor volumes and bioluminescence levels over 2 months.
Collapse
Affiliation(s)
| | - Magali Zeisser Labouebe
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Rute Castro
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | | | | | | | - Gaetan Van Simaeys
- CMMI, Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Charleroi (Gosselies), Belgium
| | - Gilles Doumont
- CMMI, Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Charleroi (Gosselies), Belgium
| | - Lionel Larbanoix
- CMMI, Center for Microscopy and Molecular Imaging, Université de Mons, Charleroi (Gosselies), Belgium
| | - Egor Zindy
- CMMI, Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Charleroi (Gosselies), Belgium
| | - António E. Cunha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
38
|
Wilson R. The application of capability indices in the validation of ELISA methodology. Bioanalysis 2023; 15:1277-1286. [PMID: 37737130 DOI: 10.4155/bio-2023-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Aim: To investigate the impact of sample replication number (duplicate vs triplicate) on the validation of ELISA methodology. Materials & methods: The methodology was validated with reference sample and test sample as an 11-point triplicate dilution series. The data were reanalyzed post-validation as if conducted as a duplicate dilution series. Results: The triplicate methodology was validated with a precision of 5.3% and mean bias of -1.7%. The duplicate methodology generated a precision of 5.7% and mean bias of -2.2%. Conclusion: Both the triplicate (method capability index = 1.37) and duplicate (method capability index = 1.25) ELISA methodology can support an 80-125% relative potency specification with a 0.004% or 0.018% probability of out-of-specification results, respectively.
Collapse
Affiliation(s)
- Robert Wilson
- Piramal Pharma Solutions, Analytical Development, Earls Road, Grangemouth, Stirlingshire, FK3 8XG, UK
| |
Collapse
|
39
|
Babbar R, Vanya, Bassi A, Arora R, Aggarwal A, Wal P, Dwivedi SK, Alolayan S, Gulati M, Vargas-De-La-Cruz C, Behl T, Ojha S. Understanding the promising role of antibody drug conjugates in breast and ovarian cancer. Heliyon 2023; 9:e21425. [PMID: 38027672 PMCID: PMC10660083 DOI: 10.1016/j.heliyon.2023.e21425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
A nascent category of anticancer therapeutic drugs called antibody-drug conjugates (ADCs) relate selectivity of aimed therapy using chemotherapeutic medicines with high cytotoxic power. Progressive linker technology led to the advancement of more efficacious and safer treatments. It offers neoteric as well as encouraging therapeutic strategies for treating cancer. ADCs selectively administer a medication by targeting antigens which are abundantly articulated on the membrane surface of tumor cells. Tumor-specific antigens are differently expressed in breast and ovarian cancers and can be utilized to direct ADCs. Compared to conventional chemotherapeutic drugs, this approach enables optimal tumor targeting while minimizing systemic damage. A cleavable linker improves the ADCs because it allows the toxic payload to be distributed to nearby cells that do not express the target protein, operating on assorted tumors with dissimilar cell aggregation. Presently fifteen ADCs are being studied in breast and ovarian carcinoma preclinically, and assortment of few have already undergone promising early-phase clinical trial testing. Furthermore, Phase I and II studies are investigating a wide variety of ADCs, and preliminary findings are encouraging. An expanding sum of ADCs will probably become feasible therapeutic choices as solo agents or in conjunction with chemotherapeutic agents. This review accentuates the most recent preclinical findings, pharmacodynamics, and upcoming applications of ADCs in breast and ovarian carcinoma.
Collapse
Affiliation(s)
- Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Vanya
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Aarti Bassi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ankur Aggarwal
- Institute of Pharmaceutical Sciences and Research, Gwalior, Madhya Pradesh, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, NH-19 Bhauti, Kanpur, Uttar Pradesh, India
| | | | - Salma Alolayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 20227, Australia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, Bromatology and Toxicology, Universidad Nacional Mayor de San Marcos, Lima, 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, 15001, Peru
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab, 140306, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
40
|
Kalinovsky DV, Kholodenko IV, Svirshchevskaya EV, Kibardin AV, Ryazantsev DY, Rozov FN, Larin SS, Deyev SM, Kholodenko RV. Targeting GD2-Positive Tumor Cells by Pegylated scFv Fragment-Drug Conjugates Carrying Maytansinoids DM1 and DM4. Curr Issues Mol Biol 2023; 45:8112-8125. [PMID: 37886955 PMCID: PMC10604934 DOI: 10.3390/cimb45100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Oligomerization of antibody fragments via modification with polyethylene glycol (pegylation) may alter their function and properties, leading to a multivalent interaction of the resulting constructs with the target antigen. In a recent study, we generated pegylated monomers and multimers of scFv fragments of GD2-specific antibodies using maleimide-thiol chemistry. Multimerization enhanced the antigen-binding properties and demonstrated a more efficient tumor uptake in a syngeneic GD2-positive mouse cancer model compared to monomeric antibody fragments, thereby providing a rationale for improving the therapeutic characteristics of GD2-specific antibody fragments. In this work, we obtained pegylated conjugates of scFv fragments of GD2-specific antibodies with maytansinoids DM1 or DM4 using tetravalent PEG-maleimide (PEG4). The protein products from the two-stage thiol-maleimide reaction resolved by gel electrophoresis indicated that pegylated scFv fragments constituted the predominant part of the protein bands, and most of the scFv formed pegylated monomers and dimers. The conjugates retained the ability to bind ganglioside GD2 comparable to that of the parental scFv fragment and to specifically interact with GD2-positive cells. Both induced significant inhibitory effects in the GD2-positive B78-D14 cell line, in contrast to the GD2-negative B16 cell line. The decrease in the B78-D14 cell viability when treated with scFv-PEG4-DM4 was more prominent than that for scFv-PEG4-DM1, and was characterized by a twofold lower half-maximal inhibitory concentration (IC50). Unlike the parental scFv fragment, the product of scFv and PEG4 conjugation (scFv-PEG4), consisting predominantly of pegylated scFv multimers and monomers, induced direct cell death in the GD2-positive B78-D14 cells. However, the potency of scFv-PEG4 was low in the selected concentration range, thus demonstrating that the cytotoxic effect of DM1 and DM4 within the antibody fragment-drug conjugates was primary. The suggested approach may contribute to development of novel configurations of antibody fragment-drug conjugates for cancer treatment.
Collapse
Affiliation(s)
- Daniel V. Kalinovsky
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia; (D.V.K.); (E.V.S.); (D.Y.R.); (F.N.R.); (S.M.D.)
| | - Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow 119121, Russia
| | - Elena V. Svirshchevskaya
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia; (D.V.K.); (E.V.S.); (D.Y.R.); (F.N.R.); (S.M.D.)
| | - Alexey V. Kibardin
- Laboratory of Molecular Immunology, D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., Moscow 117997, Russia; (A.V.K.); (S.S.L.)
| | - Dmitry Yu. Ryazantsev
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia; (D.V.K.); (E.V.S.); (D.Y.R.); (F.N.R.); (S.M.D.)
| | - Fedor N. Rozov
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia; (D.V.K.); (E.V.S.); (D.Y.R.); (F.N.R.); (S.M.D.)
| | - Sergey S. Larin
- Laboratory of Molecular Immunology, D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., Moscow 117997, Russia; (A.V.K.); (S.S.L.)
| | - Sergey M. Deyev
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia; (D.V.K.); (E.V.S.); (D.Y.R.); (F.N.R.); (S.M.D.)
- Laboratory of Molecular Pharmacology, Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow 119992, Russia
- “Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Russia
| | - Roman V. Kholodenko
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia; (D.V.K.); (E.V.S.); (D.Y.R.); (F.N.R.); (S.M.D.)
- Real Target LLC, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
| |
Collapse
|
41
|
Bitsch P, Baum ES, Beltrán Hernández I, Bitsch S, Harwood J, Oliveira S, Kolmar H. Penetration of Nanobody-Dextran Polymer Conjugates through Tumor Spheroids. Pharmaceutics 2023; 15:2374. [PMID: 37896133 PMCID: PMC10609859 DOI: 10.3390/pharmaceutics15102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Here we report the generation of nanobody dextran polymer conjugates (dextraknobs) that are loaded with small molecules, i.e., fluorophores or photosensitizers, for potential applications in cancer diagnostics and therapy. To this end, the molecules are conjugated to the dextran polymer which is coupled to the C-terminus of an EGFR-specific nanobody using chemoenzymatic approaches. A monovalent EGFR-targeted nanobody and biparatopic version modified with different dextran average molecular weights (1000, 5000, and 10,000) were probed for their ability to penetrate tumor spheroids. For monovalent Cy5-labeled dextraknobs, the utilization of smaller sized dextran (MW 5000 vs. 10,000) was found to be beneficial for more homogeneous penetration into A431 tumor spheroids over time. For the biparatopic dual nanobody comprising MW 1000, 5000, and 10,000 dextran labeled with photosensitizer IRDye700DX, penetration behavior was comparable to that of a direct nanobody-photosensitizer conjugate lacking a dextran scaffold. Additionally, dextraknobs labeled with IRDye700DX incubated with cells in 2D and 3D showed potent cell killing upon illumination, thus inducing photodynamic therapy (PDT). In line with previous results, monovalent nanobody conjugates displayed deeper and more homogenous penetration through spheroids than the bivalent conjugates. Importantly, the smaller size dextrans did not affect the distribution of the conjugates, thus encouraging further development of dextraknobs.
Collapse
Affiliation(s)
- Peter Bitsch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany; (P.B.); (S.B.); (J.H.)
| | - Eva S. Baum
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.B.); (I.B.H.)
| | - Irati Beltrán Hernández
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.B.); (I.B.H.)
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Sebastian Bitsch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany; (P.B.); (S.B.); (J.H.)
| | - Jakob Harwood
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany; (P.B.); (S.B.); (J.H.)
| | - Sabrina Oliveira
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.B.); (I.B.H.)
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany; (P.B.); (S.B.); (J.H.)
- Centre of Synthetic Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
42
|
Riccardi F, Dal Bo M, Macor P, Toffoli G. A comprehensive overview on antibody-drug conjugates: from the conceptualization to cancer therapy. Front Pharmacol 2023; 14:1274088. [PMID: 37790810 PMCID: PMC10544916 DOI: 10.3389/fphar.2023.1274088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody-Drug Conjugates (ADCs) represent an innovative class of potent anti-cancer compounds that are widely used in the treatment of hematologic malignancies and solid tumors. Unlike conventional chemotherapeutic drug-based therapies, that are mainly associated with modest specificity and therapeutic benefit, the three key components that form an ADC (a monoclonal antibody bound to a cytotoxic drug via a chemical linker moiety) achieve remarkable improvement in terms of targeted killing of cancer cells and, while sparing healthy tissues, a reduction in systemic side effects caused by off-tumor toxicity. Based on their beneficial mechanism of action, 15 ADCs have been approved to date by the market approval by the Food and Drug Administration (FDA), the European Medicines Agency (EMA) and/or other international governmental agencies for use in clinical oncology, and hundreds are undergoing evaluation in the preclinical and clinical phases. Here, our aim is to provide a comprehensive overview of the key features revolving around ADC therapeutic strategy including their structural and targeting properties, mechanism of action, the role of the tumor microenvironment and review the approved ADCs in clinical oncology, providing discussion regarding their toxicity profile, clinical manifestations and use in novel combination therapies. Finally, we briefly review ADCs in other pathological contexts and provide key information regarding ADC manufacturing and analytical characterization.
Collapse
Affiliation(s)
- Federico Riccardi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
43
|
Lerchen HG, Stelte-Ludwig B, Heroult M, Zubov D, Gericke KM, Wong H, Frigault MM, Johnson AJ, Izumi R, Hamdy A. Discovery of VIP236, an αvβ3-Targeted Small-Molecule-Drug Conjugate with Neutrophil Elastase-Mediated Activation of 7-Ethyl Camptothecin Payload for Treatment of Solid Tumors. Cancers (Basel) 2023; 15:4381. [PMID: 37686656 PMCID: PMC10486604 DOI: 10.3390/cancers15174381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The emerging field of small-molecule-drug conjugates (SMDCs) using small-molecule biomarker-targeted compounds for tumor homing may provide new perspectives for targeted delivery. Here, for the first time, we disclose the structure and the synthesis of VIP236, an SMDC designed for the treatment of metastatic solid tumors by targeting αvβ3 integrins and extracellular cleavage of the 7-ethyl camptothecin payload by neutrophil elastase in the tumor microenvironment. Imaging studies in the Lewis lung mouse model using an elastase cleavable quenched substrate showed pronounced elastase activity in the tumor. Pharmacokinetics studies of VIP236 in tumor-bearing mice demonstrated high stability of the SMDC in plasma and high tumor accumulation of the cleaved payload. Studies in bile-duct-cannulated rats showed that biliary excretion of the unmodified conjugate is the primary route of elimination. Treatment- and time-dependent phosphorylation of H2AX, a marker of DNA damage downstream of topoisomerase 1 inhibition, verified the on-target activity of the payload cleaved from VIP236 in vivo. Treatment with VIP236 resulted in long-lasting tumor regression in subcutaneous patient-derived xenograft (PDX) models from patients with non-small-cell lung, colon, and renal cancer as well as in two orthotopic metastatic triple-negative breast cancer PDX models. In these models, a significant reduction of brain and lung metastases also was observed.
Collapse
Affiliation(s)
| | | | | | - Dmitry Zubov
- Bayer AG, 42096 Wuppertal, Germany; (D.Z.); (K.M.G.)
| | | | - Harvey Wong
- Vincerx Pharma, Inc., Palo Alto, CA 94306, USA; (H.W.); (M.M.F.); (A.J.J.); (R.I.); (A.H.)
| | - Melanie M. Frigault
- Vincerx Pharma, Inc., Palo Alto, CA 94306, USA; (H.W.); (M.M.F.); (A.J.J.); (R.I.); (A.H.)
| | - Amy J. Johnson
- Vincerx Pharma, Inc., Palo Alto, CA 94306, USA; (H.W.); (M.M.F.); (A.J.J.); (R.I.); (A.H.)
| | - Raquel Izumi
- Vincerx Pharma, Inc., Palo Alto, CA 94306, USA; (H.W.); (M.M.F.); (A.J.J.); (R.I.); (A.H.)
| | - Ahmed Hamdy
- Vincerx Pharma, Inc., Palo Alto, CA 94306, USA; (H.W.); (M.M.F.); (A.J.J.); (R.I.); (A.H.)
| |
Collapse
|
44
|
Jin W, Zhang M, Dong C, Huang L, Luo Q. The multifaceted role of MUC1 in tumor therapy resistance. Clin Exp Med 2023; 23:1441-1474. [PMID: 36564679 DOI: 10.1007/s10238-022-00978-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Tumor therapeutic resistances are frequently linked to the recurrence and poor prognosis of cancers and have been a key bottleneck in clinical tumor treatment. Mucin1 (MUC1), a heterodimeric transmembrane glycoprotein, exhibits abnormally overexpression in a variety of human tumors and has been confirmed to be related to the formation of therapeutic resistance. In this review, the multifaceted roles of MUC1 in tumor therapy resistance are summarized from aspects of pan-cancer principles shared among therapies and individual mechanisms dependent on different therapies. Concretely, the common mechanisms of therapy resistance across cancers include interfering with gene expression, promoting genome instability, modifying tumor microenvironment, enhancing cancer heterogeneity and stemness, and activating evasion and metastasis. Moreover, the individual mechanisms of therapy resistance in chemotherapy, radiotherapy, and biotherapy are introduced. Last but not least, MUC1-involved therapy resistance in different types of cancers and MUC1-related clinical trials are summarized.
Collapse
Affiliation(s)
- Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengwei Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Changzi Dong
- Department of Bioengineering, School of Engineering and Science, University of Pennsylvania, Philadelphia, 19104, USA
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai, China.
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
45
|
Malecova B, Burke RS, Cochran M, Hood MD, Johns R, Kovach PR, Doppalapudi VR, Erdogan G, Arias JD, Darimont B, Miller CD, Huang H, Geall A, Younis H, Levin AA. Targeted tissue delivery of RNA therapeutics using antibody-oligonucleotide conjugates (AOCs). Nucleic Acids Res 2023; 51:5901-5910. [PMID: 37224533 PMCID: PMC10325888 DOI: 10.1093/nar/gkad415] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023] Open
Abstract
Although targeting TfR1 to deliver oligonucleotides to skeletal muscle has been demonstrated in rodents, effectiveness and pharmacokinetic/pharmacodynamic (PKPD) properties remained unknown in higher species. We developed antibody-oligonucleotide conjugates (AOCs) towards mice or monkeys utilizing anti-TfR1 monoclonal antibodies (αTfR1) conjugated to various classes of oligonucleotides (siRNA, ASOs and PMOs). αTfR1 AOCs delivered oligonucleotides to muscle tissue in both species. In mice, αTfR1 AOCs achieved a > 15-fold higher concentration to muscle tissue than unconjugated siRNA. A single dose of an αTfR1 conjugated to an siRNA against Ssb mRNA produced > 75% Ssb mRNA reduction in mice and monkeys, and mRNA silencing was greatest in skeletal and cardiac (striated) muscle with minimal to no activity in other major organs. In mice the EC50 for Ssb mRNA reduction in skeletal muscle was >75-fold less than in systemic tissues. Oligonucleotides conjugated to control antibodies or cholesterol produced no mRNA reduction or were 10-fold less potent, respectively. Tissue PKPD of AOCs demonstrated mRNA silencing activity primarily driven by receptor-mediated delivery in striated muscle for siRNA oligonucleotides. In mice, we show that AOC-mediated delivery is operable across various oligonucleotide modalities. AOC PKPD properties translated to higher species, providing promise for a new class of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Barbora Malecova
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Rob S Burke
- Seawolf Therapeutics, One Sansome Street Suite 3630, San Francisco, CA 94104, USA
| | - Michael Cochran
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Michael D Hood
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Rachel Johns
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Philip R Kovach
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Venkata R Doppalapudi
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Gulin Erdogan
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - J Danny Arias
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | | | - Christopher D Miller
- California Northstate University College of Medicine, 9700 W Taron Dr, Elk Grove, CA 95757, USA
| | - Hanhua Huang
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Andrew Geall
- Replicate Biosciences, 10210 Campus Point Dr, Suite 150, San Diego, CA 92121, USA
| | - Husam S Younis
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Arthur A Levin
- Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| |
Collapse
|
46
|
Abbood A. Optimization of the Imaged cIEF Method for Monitoring the Charge Heterogeneity of Antibody-Maytansine Conjugate. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:8150143. [PMID: 37305029 PMCID: PMC10256444 DOI: 10.1155/2023/8150143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
The aim of this study was to develop a whole-column imaging-detection capillary isoelectric focusing (icIEF) method for the analytical characterization of charge heterogeneity of a novel humanized anti-EphA2 antibody conjugated to a maytansine derivative. In addition to focusing time, sample composition was optimized: pH range, percent of carrier ampholytes, conjugated antibody concentration, and urea concentration. A good separation of charge isoforms was obtained with 4% carrier ampholytes of a large (3-10) and narrow pH range (8-10.5) (1 : 1 ratio), conjugated antibody concentration (0.3-1 mg/ml) with a good linearity (R2: 0.9905), 2 M of urea concentration, and 12 minute for focusing. The optimized icIEF method demonstrated a good interday repeatability with RSD values: <1% (pI), <8% (% peak area), and 7% (total peak areas). The optimized icIEF was useful as an analytical characterization tool to assess the charged isoform profile of a discovery batch of the studied maytansinoid-antibody conjugate in comparison to its naked antibody. It exhibited a large pI range (7.5-9.0), while its naked antibody showed a narrow pI range (8.9-9.0). In the discovery batch of maytansinoid-antibody conjugate, 2% of charge isoforms had the same pI as the pI of naked antibody isoforms.
Collapse
Affiliation(s)
- Ayat Abbood
- Department of Medicinal Chemistry and Quality Control, Faculty of Pharmacy, Tishreen University, Lattakia, Syria
| |
Collapse
|
47
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
48
|
Song X, Yu H, Sullenger C, Gray BP, Yan A, Kelly L, Sullenger B. An Aptamer That Rapidly Internalizes into Cancer Cells Utilizes the Transferrin Receptor Pathway. Cancers (Basel) 2023; 15:cancers15082301. [PMID: 37190227 DOI: 10.3390/cancers15082301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Strategies to direct drugs specifically to cancer cells have been increasingly explored, and significant progress has been made toward such targeted therapy. For example, drugs have been conjugated into tumor-targeting antibodies to enable delivery directly to tumor cells. Aptamers are an attractive class of molecules for this type of drug targeting as they are high-affinity/high-specificity ligands, relatively small in size, GMP manufacturable at a large-scale, amenable to chemical conjugation, and not immunogenic. Previous work from our group revealed that an aptamer selected to internalize into human prostate cancer cells, called E3, can also target a broad range of human cancers but not normal control cells. Moreover, this E3 aptamer can deliver highly cytotoxic drugs to cancer cells as Aptamer-highly Toxic Drug Conjugates (ApTDCs) and inhibit tumor growth in vivo. Here, we evaluate its targeting mechanism and report that E3 selectively internalizes into cancer cells utilizing a pathway that involves transferrin receptor 1 (TfR 1). E3 binds to recombinant human TfR 1 with high affinity and competes with transferrin (Tf) for binding to TfR1. In addition, knockdown or knockin of human TfR1 results in a decrease or increase in E3 cell binding. Here, we reported a molecular model of E3 binding to the transferrin receptor that summarizes our findings.
Collapse
Affiliation(s)
- Xirui Song
- Department of Surgery, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Haixiang Yu
- Department of Surgery, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Bethany Powell Gray
- Department of Surgery, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amy Yan
- Department of Surgery, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Linsley Kelly
- Department of Surgery, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bruce Sullenger
- Department of Surgery, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
49
|
Subhan MA, Torchilin VP. Advances in Targeted Therapy of Breast Cancer with Antibody-Drug Conjugate. Pharmaceutics 2023; 15:1242. [PMID: 37111727 PMCID: PMC10144345 DOI: 10.3390/pharmaceutics15041242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a potential and promising therapy for a wide variety of cancers, including breast cancer. ADC-based drugs represent a rapidly growing field of breast cancer therapy. Various ADC drug therapies have progressed over the past decade and have generated diverse opportunities for designing of state-of-the-art ADCs. Clinical progress with ADCs for the targeted therapy of breast cancer have shown promise. Off-target toxicities and drug resistance to ADC-based therapy have hampered effective therapy development due to the intracellular mechanism of action and limited antigen expression on breast tumors. However, innovative non-internalizing ADCs targeting the tumor microenvironment (TME) component and extracellular payload delivery mechanisms have led to reduced drug resistance and enhanced ADC effectiveness. Novel ADC drugs may deliver potent cytotoxic agents to breast tumor cells with reduced off-target effects, which may overcome difficulties related to delivery efficiency and enhance the therapeutic efficacy of cytotoxic cancer drugs for breast cancer therapy. This review discusses the development of ADC-based targeted breast cancer therapy and the clinical translation of ADC drugs for breast cancer treatment.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, North Eastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, North Eastern University, Boston, MA 02115, USA
| |
Collapse
|
50
|
Kumar S, Sherman MY. Resistance to TOP-1 Inhibitors: Good Old Drugs Still Can Surprise Us. Int J Mol Sci 2023; 24:ijms24087233. [PMID: 37108395 PMCID: PMC10138578 DOI: 10.3390/ijms24087233] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Irinotecan (SN-38) is a potent and broad-spectrum anticancer drug that targets DNA topoisomerase I (Top1). It exerts its cytotoxic effects by binding to the Top1-DNA complex and preventing the re-ligation of the DNA strand, leading to the formation of lethal DNA breaks. Following the initial response to irinotecan, secondary resistance is acquired relatively rapidly, compromising its efficacy. There are several mechanisms contributing to the resistance, which affect the irinotecan metabolism or the target protein. In addition, we have demonstrated a major resistance mechanism associated with the elimination of hundreds of thousands of Top1 binding sites on DNA that can arise from the repair of prior Top1-dependent DNA cleavages. Here, we outline the major mechanisms of irinotecan resistance and highlight recent advancements in the field. We discuss the impact of resistance mechanisms on clinical outcomes and the potential strategies to overcome resistance to irinotecan. The elucidation of the underlying mechanisms of irinotecan resistance can provide valuable insights for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Michael Y Sherman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| |
Collapse
|