1
|
Bandala C, Flores-Robles D, Sierra-Martínez P, Millán-Vega A, Ruíz González E, Perez-Santos M. Trispecific anti-CD3/BCMA/CD38 antibodies for multiple myeloma: a patent evaluation of US20240132615. Expert Opin Ther Pat 2025; 35:1-6. [PMID: 39460602 DOI: 10.1080/13543776.2024.2423018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION CD38 and BCMA are proteins expressed at high levels in multiple myeloma cells, so they are targets for the development of mono- or multispecific antibodies. AREAS COVERED Patent US20240132615 describes anti-CD3/BCMA/CD38 trispecific antibodies and a method of treating relapsed/refractory multiple myeloma pharmaceutically. In vitro and preclinical results show that anti-CD3/BCMA/CD38 trispecific antibodies have stronger binding affinity and killing potency compared to daratumumab, isatuximab, and teclistamab antibodies. EXPERT OPINION The trispecific structure and a silenced Fc are pharmaceutical advantages of the anti-CD3/BCMA/CD38 antibody for the treatment of relapsed or refractory multiple myeloma.
Collapse
Affiliation(s)
- Cindy Bandala
- Laboratorio de Medicina Traslacional Aplicada a Neurociencias, Enfermedades Crónicas y Emergentes, Escuela superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Donaciano Flores-Robles
- Unidad de Investigación especializada en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - Pavel Sierra-Martínez
- Unidad de Investigación especializada en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - Alejandro Millán-Vega
- Unidad de Investigación especializada en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, México
| | - Eunice Ruíz González
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Martin Perez-Santos
- Innovation and Knowledge Transfer Department, Benemerita Autonomous University of Puebla, Puebla, México
| |
Collapse
|
2
|
Ellerman DA. The Evolving Applications of Bispecific Antibodies: Reaping the Harvest of Early Sowing and Planting New Seeds. BioDrugs 2024:10.1007/s40259-024-00691-0. [PMID: 39673023 DOI: 10.1007/s40259-024-00691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
After decades of gradual progress from conceptualization to early clinical trials (1960-2000), the therapeutic potential of bispecific antibodies (bisp Abs) is now being fully realized. Insights gained from both successful and unsuccessful trials are helping to identify which mechanisms of action, antibody formats, and targets prove most effective, and which may benefit from further refinement. While T-cell engagers remain the most commonly used class of bisp Abs, current efforts aim to increase their effectiveness by co-engaging costimulatory molecules, reducing escape mechanisms, and countering immunosuppression. Strategies to minimize cytokine release syndrome (CRS) are also actively under development. In addition, novel antibody formats that are selectively activated within tumors are an exciting area of research, as is the precise targeting of specific T-cell subsets. Beyond T cells, the recruitment of macrophages and dendritic cells is attracting increasing interest, with researchers exploring various macrophage receptors to promote phagocytosis or to carry out specialized functions, such as the immunologically silent clearance of amyloid-beta plaques in the brain. While bisp Abs targeting B cells are relatively limited, they are primarily aimed at inhibiting B-cell activity in autoimmune diseases. Another evolving application involves the forced interaction between proteins. Beyond the successful development of Hemlibra for hemophilia, bispecific antibodies that mimic cytokine activity are being explored. Additionally, the recruitment of cell surface ubiquitin ligases and other enzymes represents a novel and promising therapeutic strategy. In regard to antibody formats, some applications such as the combination of T-cell engagers with costimulatory molecules are driving the development of trispecific antibodies, at least in preclinical settings. However, the increasing structural complexity of multispecific antibodies often leads to more challenging development paths, and the number of multispecific antibodies in clinical trials remains low. The clinical success of certain applications and well-established production methods position this therapeutic class to expand its benefits into other therapeutic areas.
Collapse
Affiliation(s)
- Diego A Ellerman
- Antibody Engineering Department, Genentech Inc, South San Francisco, USA.
| |
Collapse
|
3
|
Nolan-Stevaux O, Smith R. Logic-gated and contextual control of immunotherapy for solid tumors: contrasting multi-specific T cell engagers and CAR-T cell therapies. Front Immunol 2024; 15:1490911. [PMID: 39606234 PMCID: PMC11599190 DOI: 10.3389/fimmu.2024.1490911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
CAR-T cell and T cell engager therapies have demonstrated transformational efficacy against hematological malignancies, but achieving efficacy in solid tumors has been more challenging, in large part because of on-target/off-tumor toxicities and sub-optimal T cell anti-tumor cytotoxic functions. Here, we discuss engineering solutions that exploit biological properties of solid tumors to overcome these challenges. Using logic gates as a framework, we categorize the numerous approaches that leverage two inputs instead of one to achieve better cancer selectivity or efficacy in solid tumors with dual-input CAR-Ts or multi-specific TCEs. In addition to the "OR gate" and "AND gate" approaches that leverage dual tumor antigen targeting, we also review "contextual AND gate" technologies whereby continuous cancer-selective inputs such a pH, hypoxia, target density, tumor proteases, and immune-suppressive cytokine gradients can be creatively incorporated in therapy designs. We also introduce the notion of "output directionality" to distinguish dual-input strategies that mechanistically impact cancer cell killing or T cell fitness. Finally, we contrast the feasibility and potential benefits of the various approaches using CAR-T and TCE therapeutics and discuss why the promising "IF/THEN" and "NOT" gate types pertain more specifically to CAR-T therapies, but can also succeed by integrating both technologies.
Collapse
Affiliation(s)
| | - Richard Smith
- Cell Biology Research, Kite Pharma, Foster City, CA, United States
| |
Collapse
|
4
|
Nix MA, Lareau CA, Verboon J, Kugler DG. Identifying optimal tumor-associated antigen combinations with single-cell genomics to enable multi-targeting therapies. Front Immunol 2024; 15:1492782. [PMID: 39575243 PMCID: PMC11578993 DOI: 10.3389/fimmu.2024.1492782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Targeted antibody-based therapy for oncology represents a highly efficacious approach that has demonstrated robust responses against single tumor-associated antigen (TAA) targets. However, tumor heterogeneity presents a major obstacle for targeting most solid tumors due to a lack of single targets that possess the right on-tumor/off-tumor expression profile required for adequate therapeutic index. Multi-targeting antibodies that engage two TAAs simultaneously may address this challenge through Boolean logic-gating function by improving both therapeutic specificity and efficacy. In addition to the complex engineering of multi-targeting antibodies for ideal logic-gate function, selecting optimal TAA combinations ab initio is the critical step to initiate preclinical development but remains largely unexplored with modern data-generation platforms. Here, we propose that single-cell atlases of both primary tumor and normal tissues are uniquely positioned to unveil optimal target combinations for multi-targeting antibody therapeutics. We review the most recent progress in multi-targeting antibody clinical development, as well as the designs of current TAA combinations currently exploited. Ultimately, we describe how multi-targeting antibodies tuned to target pairs nominated through a data-driven process are poised to revolutionize therapeutic safety and efficacy, particularly for difficult-to-treat solid tumors.
Collapse
Affiliation(s)
- Matthew A. Nix
- Cartography Biosciences, South San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Caleb A. Lareau
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jeffrey Verboon
- Cartography Biosciences, South San Francisco, CA, United States
| | - David G. Kugler
- Cartography Biosciences, South San Francisco, CA, United States
| |
Collapse
|
5
|
Lu Y, Sun Y, Zhang J, Kong M, Zhao Z, Sun B, Wang Y, Jiang Y, Chen S, Wang C, Tong Y, Wen L, Huang M, Wu F, Zhang L. The deubiquitinase USP2a promotes tumor immunosuppression by stabilizing immune checkpoint B7-H4 in lung adenocarcinoma harboring EGFR-activating mutants. Cancer Lett 2024; 596:217020. [PMID: 38849009 DOI: 10.1016/j.canlet.2024.217020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/20/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
B7-H4 is an immune checkpoint crucial for inhibiting CD8+ T-cell activity. A clinical trial is underway to investigate B7-H4 as a potential immunotherapeutic agent. However, the regulatory mechanism of B7-H4 degradation via the ubiquitin-proteasome pathway (UPP) remains poorly understood. In this study, we discovered that proteasome inhibitors effectively increased B7-H4 expression, while EGFR-activating mutants promoted B7-H4 expression through the UPP. We screened B7-H4 binding proteins by co-immunoprecipitation and mass spectrometry and found that USP2a acted as a deubiquitinase of B7-H4 by removing K48- and K63-linked ubiquitin chains from B7-H4, leading to a reduction in B7-H4 degradation. EGFR mutants enhanced B7-H4 stability by upregulating USP2a expression. We further investigated the role of USP2a in tumor growth in vivo. Depletion of USP2a in L858R/LLC cells inhibited tumor cell proliferation, consequently suppressing tumor growth in immune-deficient nude mice by destabilizing downstream molecules such as Cyclin D1. In an immune-competent C57BL/6 mouse tumor model, USP2a abrogation facilitated infiltration of CD95+CD8+ effector T cells and hindered infiltration of Tim-3+CD8+ and LAG-3+CD8+ exhausted T cells by destabilizing B7-H4. Clinical lung adenocarcinoma samples showed a significant correlation between B7-H4 abundance and USP2a expression, indicating the contribution of the EGFR/USP2a/B7-H4 axis to tumor immunosuppression. In summary, this study elucidates the dual effects of USP2a in tumor growth by stabilizing Cyclin D1, promoting tumor cell proliferation, and stabilizing B7-H4, contributing to tumor immunosuppression. Therefore, USP2a represents a potential target for tumor therapy.
Collapse
Affiliation(s)
- Youwei Lu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yu Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jie Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Miao Kong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhiming Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Boshu Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yuan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ying Jiang
- Department of Hematology, Shanghai Zhaxin Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Shaomu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chao Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, China
| | - Yin Tong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangzhu Wen
- He Cheng Biotechnology Suzhou Co.Ltd, Suzhou, Jiangsu, China
| | - Moli Huang
- Department of Bioinformatics, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Liang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
7
|
Fawcett C, Tickle JR, Coles CH. Facilitating high throughput bispecific antibody production and potential applications within biopharmaceutical discovery workflows. MAbs 2024; 16:2311992. [PMID: 39674918 DOI: 10.1080/19420862.2024.2311992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 12/17/2024] Open
Abstract
A major driver for the recent investment surge in bispecific antibody (bsAb) platforms and products is the multitude of distinct mechanisms of action that bsAbs offer compared to a combination of two monoclonal antibodies. Four bsAb products were granted first regulatory approvals in the US or EU during 2023 and the biopharmaceutical industry pipeline is brimming with bsAb candidates across a broad range of therapeutic applications. In previously reported bsAb discovery campaigns, following a hypothesis-based choice of two specific target proteins, selections and screening activities have often been performed in mono-specific formats. The conversion to bispecific modalities has usually been positioned toward the end of the discovery process and has involved small numbers of lead molecules, largely due to challenges in expressing, purifying, and analyzing large numbers of bsAbs. In this review, we discuss emerging strategies to facilitate the production of expanded bsAb panels, focusing particularly upon combinatorial methods to generate bsAb matrices. Such technologies will enable screening in. bispecific formats at earlier stages of discovery campaigns, not only widening the accessible protein space to maximize chances of success, but also advancing empirical bi-target validation activities to assess initial target selection hypotheses.
Collapse
Affiliation(s)
- Caitlin Fawcett
- Large Molecule Discovery, GSK, GSK Medicines Research Centre, Stevenage, UK
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Joseph R Tickle
- Large Molecule Discovery, GSK, GSK Medicines Research Centre, Stevenage, UK
| | - Charlotte H Coles
- Large Molecule Discovery, GSK, GSK Medicines Research Centre, Stevenage, UK
| |
Collapse
|
8
|
Mullin M, McClory J, Haynes W, Grace J, Robertson N, van Heeke G. Applications and challenges in designing VHH-based bispecific antibodies: leveraging machine learning solutions. MAbs 2024; 16:2341443. [PMID: 38666503 PMCID: PMC11057648 DOI: 10.1080/19420862.2024.2341443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
The development of bispecific antibodies that bind at least two different targets relies on bringing together multiple binding domains with different binding properties and biophysical characteristics to produce a drug-like therapeutic. These building blocks play an important role in the overall quality of the molecule and can influence many important aspects from potency and specificity to stability and half-life. Single-domain antibodies, particularly camelid-derived variable heavy domain of heavy chain (VHH) antibodies, are becoming an increasingly popular choice for bispecific construction due to their single-domain modularity, favorable biophysical properties, and potential to work in multiple antibody formats. Here, we review the use of VHH domains as building blocks in the construction of multispecific antibodies and the challenges in creating optimized molecules. In addition to exploring traditional approaches to VHH development, we review the integration of machine learning techniques at various stages of the process. Specifically, the utilization of machine learning for structural prediction, lead identification, lead optimization, and humanization of VHH antibodies.
Collapse
|
9
|
Yin L, Chen GL, Xiang Z, Liu YL, Li XY, Bi JW, Wang Q. Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomed Pharmacother 2023; 162:114648. [PMID: 37023621 DOI: 10.1016/j.biopha.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer is the leading cancer in women. Around 20-30% breast cancer patients undergo invasion or metastasis after radical surgical resection and eventually die. Number of breast cancer patients show poor sensitivity toward treatments despite the advances in chemotherapy, endocrine therapy, and molecular targeted treatments. Therapeutic resistance and tumor recurrence or metastasis develop with the ongoing treatments. Conducive treatment strategies are thus required. Chimeric antigen receptor (CAR)-modified T-cell therapy has progressed as a part of tumor immunotherapy. However, CAR-T treatment has not been effective in solid tumors because of tumor microenvironment complexity, inhibitory effects of extracellular matrix, and lacking ideal tumor antigens. Herein, the prospects of CAR-T cell therapy for metastatic breast cancer are discussed, and the targets for CAR-T therapy in breast cancer (HER-2, C-MET, MSLN, CEA, MUC1, ROR1, EGFR) at clinical level are reviewed. Moreover, solutions are proposed for the challenges of breast cancer CAR-T therapy regarding off-target effects, heterogeneous antigen expression by tumor cells and immunosuppressive tumor microenvironment. Ideas for improving the therapeutics of CAR-T cell therapy in metastatic breast cancer are suggested.
Collapse
Affiliation(s)
- Li Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Shandong University of Traditional Chinese Medicine, 250355 Jinan, China
| | - Gui-Lai Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Zhuo Xiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Yu-Lin Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Xing-Yu Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Jing-Wang Bi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China.
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
10
|
Shen Y, Jin SJ, Chen YC, Liu WH, Li YM, Zhao WY, Xu YC, Chen SQ, Zhao WB. Improving the tumor selectivity of T cell engagers by logic-gated dual tumor-targeting. Pharmacol Res 2023; 192:106781. [PMID: 37119880 DOI: 10.1016/j.phrs.2023.106781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Targeting single tumor antigens makes it difficult to provide sufficient tumor selectivity for T cell engagers (TCEs), leading to undesirable toxicity and even treatment failure, which is particularly serious in solid tumors. Here, we designed novel trispecific TCEs (TriTCEs) to improve the tumor selectivity of TCEs by logic-gated dual tumor-targeting. TriTCE can effectively redirect and activate T cells to kill tumor cells (~18 pM EC50) by inducing the aggregation of dual tumor antigens, which was ~70- or 750- fold more effective than the single tumor-targeted isotype controls, respectively. Further in vivo experiments indicated that TriTCE has the ability to accumulate in tumor tissue and can induce circulating T cells to infiltrate into tumor sites. Hence, TriTCE showed a stronger tumor growth inhibition ability and significantly prolonged the survival time of the mice. Finally, we revealed that this concept of logic-gated dual tumor-targeted TriTCE can be applied to target different tumor antigens. Cumulatively, we reported novel dual tumor-targeted TriTCEs that can mediate a robust T cell response by simultaneous recognition of dual tumor antigens at the same cell surface. TriTCEs allow better selective T cell activity on tumor cells, resulting in safer TCE treatment.
Collapse
Affiliation(s)
- Ying Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Shi-Jie Jin
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Chang Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Hui Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Biosun Pharmaceutical Co., Ltd, Hangzhou, 310015, China
| | - Yi-Ming Li
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Yi Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Ying-Chun Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Qing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wen-Bin Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China.
| |
Collapse
|
11
|
Yao Y, Hu Y, Wang F. Trispecific antibodies for cancer immunotherapy. Immunology 2023. [PMID: 36855956 DOI: 10.1111/imm.13636] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Despite the clinical success of monoclonal and bispecific antibodies, there are still limitations in the therapeutic effect of malignant tumours, such as low response rate, treatment resistance, and so on, inspiring the exploration of trispecific antibodies (TsAbs). TsAbs further improve the safety and efficacy and has great clinical potential through three targets combination and formats optimization. This article reviews the development history and the target combination features of TsAbs. Although there are still great challenges in the clinical application of TsAbs, it is undeniable that TsAbs may be a breakthrough in the development of antibody drugs.
Collapse
Affiliation(s)
- Yin Yao
- Department of Pharmacy, Fourth People's Hospital of Gui Yang, Guiyang, China
| | - Yiyin Hu
- Department of Nursing, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fei Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Ball K, Dovedi SJ, Vajjah P, Phipps A. Strategies for clinical dose optimization of T cell-engaging therapies in oncology. MAbs 2023; 15:2181016. [PMID: 36823042 PMCID: PMC9980545 DOI: 10.1080/19420862.2023.2181016] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Innovative approaches in the design of T cell-engaging (TCE) molecules are ushering in a new wave of promising immunotherapies for the treatment of cancer. Their mechanism of action, which generates an in trans interaction to create a synthetic immune synapse, leads to complex and interconnected relationships between the exposure, efficacy, and toxicity of these drugs. Challenges thus arise when designing optimal clinical dose regimens for TCEs with narrow therapeutic windows, with a variety of dosing strategies being evaluated to mitigate key side effects such as cytokine release syndrome, neurotoxicity, and on-target off-tumor toxicities. This review evaluates the current approaches to dose optimization throughout the preclinical and clinical development of TCEs, along with perspectives for improvement of these strategies. Quantitative approaches used to aid the understanding of dose-exposure-response relationships are highlighted, along with opportunities to guide the rational design of next-generation TCE molecules, and optimize their dose regimens in patients.
Collapse
Affiliation(s)
- Kathryn Ball
- Clinical Pharmacology and Quantitative Pharmacology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Pavan Vajjah
- Clinical Pharmacology and Quantitative Pharmacology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Alex Phipps
- Clinical Pharmacology and Quantitative Pharmacology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|