1
|
Oh MJ, Seo Y, Seo N, An HJ. MS-Based Glycome Characterization of Biotherapeutics With N- and O-Glycosylation. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39871420 DOI: 10.1002/mas.21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
With the increasing FDA approvals of glycoprotein-based biotherapeutics including monoclonal antibodies, cytokines, and enzyme treatments, the significance of glycosylation in modulating drug efficacy and safety becomes central. This review highlights the crucial role of mass spectrometry (MS) in elucidating the glycome of biotherapeutics that feature N- and O-glycosylation, directly addressing the challenges posed by glycosylation complexity and heterogeneity. We have detailed the advancements and application of MS technologies including MALDI-TOF MS, LC-MS, and tandem MS in the precise characterization of glycoprotein therapeutics. Emphasizing MS-based strategies for detecting immunogenic glycans and ensuring batch-to-batch consistency, this review highlights targeted approaches for glycoprotein, glycopeptide, and glycan analysis tailored to meet the stringent analytical and regulatory demands of biopharmaceutical development.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Youngsuk Seo
- Life Science Institute, Institute for Basic Science, Daejeon, Korea
| | - Nari Seo
- Asia-Pacific Glycomics Reference Site, Daejeon, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
2
|
Defant P, Regl C, Huber CG, Schubert M. The NMR signature of maltose-based glycation in full-length proteins. JOURNAL OF BIOMOLECULAR NMR 2024; 78:61-72. [PMID: 38114873 PMCID: PMC10981599 DOI: 10.1007/s10858-023-00432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Reducing sugars can spontaneously react with free amines in protein side chains leading to posttranslational modifications (PTMs) called glycation. In contrast to glycosylation, glycation is a non-enzymatic modification with consequences on the overall charge, solubility, aggregation susceptibility and functionality of a protein. Glycation is a critical quality attribute of therapeutic monoclonal antibodies. In addition to glucose, also disaccharides like maltose can form glycation products. We present here a detailed NMR analysis of the Amadori product formed between proteins and maltose. For better comparison, data collection was done under denaturing conditions using 7 M urea-d4 in D2O. The here presented correlation patterns serve as a signature and can be used to identify maltose-based glycation in any protein that can be denatured. In addition to the model protein BSA, which can be readily glycated, we present data of the biotherapeutic abatacept containing maltose in its formulation buffer. With this contribution, we demonstrate that NMR spectroscopy is an independent method for detecting maltose-based glycation, that is suited for cross-validation with other methods.
Collapse
Affiliation(s)
- Pauline Defant
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.
| |
Collapse
|
3
|
Ren W, Yang L, Feng J, Wang S, Hu Q, Liu H, Zhang J, Wang Z, Yan M, Yu H, Wang Y. A platform for qualitative and quantitative characterization of α-Gal and NeuGc at the oligosaccharide level. Anal Biochem 2023; 683:115362. [PMID: 37866525 DOI: 10.1016/j.ab.2023.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Glycosylation modification serves as a pivotal quality attribute in glycoprotein-based therapeutics, emphasizing its role in drug safety and efficacy. Prior studies have underscored the potential immunogenic risks posed by the presence of galactose-α-1,3-galactose (α-Gal) and N-glycolylneuraminic acid (NeuGc) in glycoprotein formulations. This accentuates the imperative for developing robust qualitative and quantitative analytical methods to monitor these immunogenic epitopes, thereby ensuring drug safety. In the present investigation, α-Gal and NeuGc were accurately quantified using UPLC-FLR-MS/MS at the oligosaccharide level. Remarkably, α-Gal could be identified when the ion intensity ratio or the mass-to-charge ratio (m/z) of 528.19 to 366.14 exceeded 1. Concurrently, NeuGc and N-acetylneuraminic acid (NeuAc) could be unambiguously identified through their respective fragment ions at m/z 673.23 and m/z 657.23. Furthermore, relative quantification of α-Gal and NeuGc was achieved using fluorescence signals. This study introduces a sensitive and reliable analytical approach for the qualitative and quantitative assessment of α-Gal and NeuGc in glycoprotein pharmaceuticals. The methodology offers significant potential for application in process control and optimization of glycoprotein production, aimed at minimizing immunogenicity and enhancing product quality.
Collapse
Affiliation(s)
- Weicheng Ren
- School of Life Sciences, Jilin University, Changchun, 130015, China
| | - Lan Yang
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Jia Feng
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Shuyue Wang
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Qi Hu
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Hailong Liu
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Jinliang Zhang
- School of Life Sciences, Jilin University, Changchun, 130015, China; GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Zhiwei Wang
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Menghan Yan
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Hongwei Yu
- GeneScience Pharmaceutical Co., Ltd., Changchun, 130012, China
| | - Yingwu Wang
- School of Life Sciences, Jilin University, Changchun, 130015, China.
| |
Collapse
|
4
|
Moises JE, Regl C, Hinterholzer A, Huber CG, Schubert M. Unambiguous Identification of Glucose-Induced Glycation in mAbs and other Proteins by NMR Spectroscopy. Pharm Res 2023; 40:1341-1353. [PMID: 36510116 PMCID: PMC10338404 DOI: 10.1007/s11095-022-03454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Glycation is a non-enzymatic and spontaneous post-translational modification (PTM) generated by the reaction between reducing sugars and primary amine groups within proteins. Because glycation can alter the properties of proteins, it is a critical quality attribute of therapeutic monoclonal antibodies (mAbs) and should therefore be carefully monitored. The most abundant product of glycation is formed by glucose and lysine side chains resulting in fructoselysine after Amadori rearrangement. In proteomics, which routinely uses a combination of chromatography and mass spectrometry to analyze PTMs, there is no straight-forward way to distinguish between glycation products of a reducing monosaccharide and an additional hexose within a glycan, since both lead to a mass difference of 162 Da. METHODS To verify that the observed mass change is indeed a glycation product, we developed an approach based on 2D NMR spectroscopy spectroscopy and full-length protein samples denatured using high concentrations of deuterated urea. RESULTS The dominating β-pyranose form of the Amadori product shows a characteristic chemical shift correlation pattern in 1H-13C HSQC spectra suited to identify glucose-induced glycation. The same pattern was observed in spectra of a variety of artificially glycated proteins, including two mAbs, as well as natural proteins. CONCLUSION Based on this unique correlation pattern, 2D NMR spectroscopy can be used to unambiguously identify glucose-induced glycation in any protein of interest. We provide a robust method that is orthogonal to MS-based methods and can also be used for cross-validation.
Collapse
Affiliation(s)
- Jennifer E Moises
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Arthur Hinterholzer
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.
| |
Collapse
|
5
|
Hatfield G, Tepliakova L, Tran J, Lu H, Gilbert M, Tam RY. Bivalent non-human gal-α1-3-gal glycan epitopes in the Fc region of a monoclonal antibody model can be recognized by anti-Gal-α1-3-Gal IgE antibodies. MAbs 2023; 15:2239405. [PMID: 37497986 PMCID: PMC10376915 DOI: 10.1080/19420862.2023.2239405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Monoclonal antibody (mAb) production using non-human cells can introduce non-human glycan epitopes including terminal galactosyl-α1-3-galactose (α1-3-Gal) moieties. Cetuximab is a commercial mAb associated with causing anaphylaxis in some patients due to the binding of endogenous anti-α1-3-Gal IgE to the Fab (containing bi-α1-3-galactosylated glycans) but not to the Fc region (containing mono-α1-3-galactosylated glycans). Despite being low in abundance in typical commercial mAbs, the inherent sensitivity of cell culture conditions on glycosylation profiles, and the development of novel glycoengineering strategies, novel antibody-based modalities, and biosimilars by various manufacturers with varying procedures, necessitates a better understanding of the structural requirements for anti-α1-3-Gal IgE binding to the Fc region. Herein, we synthesized mAb glycoforms with varying degrees and regioisomers of α1-3-galactosylation and tested their binding to two commercial anti-α1-3-Gal human IgE antibodies derived from a human patient with allergies to red meat (comprising α1-3-Gal epitopes), as well as to the FcγRIIIA receptor. Our results demonstrate that unexpectedly, anti-α1-3-Gal human IgE antibodies can bind to Fc glycans, with bi-α1-3-galactosylation being the most important factor, highlighting that their presence in the Fc region may be considered as a potential critical quality attribute, particularly when using novel platforms in mAb-based biotherapeutics.
Collapse
Affiliation(s)
- Grayson Hatfield
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Lioudmila Tepliakova
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jessica Tran
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Huixin Lu
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Michel Gilbert
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Roger Y. Tam
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|