1
|
Grimes MI, Cheeks M, Smith J, Zurlo F, Mantle MD. Decoupling Protein Concentration and Aggregate Content Using Diffusion and Water NMR. Anal Chem 2024; 96:11155-11162. [PMID: 38943616 PMCID: PMC11256015 DOI: 10.1021/acs.analchem.3c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Protein-based biopharmaceutical drugs, such as monoclonal antibodies, account for the majority of the best-selling drugs globally in recent years. For bioprocesses, key performance indicators are the concentration and aggregate level for the product being produced. In water NMR (wNMR), the use of the water transverse relaxation rate [R2(1H2O)] has been previously used to determine protein concentration and aggregate level; however, it cannot be used to separate between them without using an additional technique. This work shows that it is possible to "decouple" these two key characteristics by recording the water diffusion coefficient [D(1H2O)] in conjunction with R2(1H2O), even in the event of overlap in either D(1H2O) or R2(1H2O). This method is demonstrated on three different systems, following appropriate D(1H2O) or R2(1H2O) calibration data acquisition for a protein of interest. Our method highlights the potential use of benchtop NMR as an at-line process analytical technique.
Collapse
Affiliation(s)
- Mark I. Grimes
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Matthew Cheeks
- Cell
Culture & Fermentation Sciences, Biopharmaceutical Development,
Biopharmaceuticals R&D, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Jennifer Smith
- Cell
Culture & Fermentation Sciences, Biopharmaceutical Development,
Biopharmaceuticals R&D, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Fabio Zurlo
- Cell
Culture & Fermentation Sciences, Biopharmaceutical Development,
Biopharmaceuticals R&D, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Mick D. Mantle
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| |
Collapse
|
2
|
Bramham JE, Wang Y, Moore SA, Golovanov AP. Assessing Photostability of mAb Formulations In Situ Using Light-Coupled NMR Spectroscopy. Anal Chem 2024; 96:9935-9943. [PMID: 38847283 PMCID: PMC11190875 DOI: 10.1021/acs.analchem.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 06/19/2024]
Abstract
Biopharmaceuticals, such as monoclonal antibodies (mAbs), need to maintain their chemical and physical stability in formulations throughout their lifecycle. It is known that exposure of mAbs to light, particularly UV, triggers chemical and physical degradation, which can be exacerbated by trace amounts of photosensitizers in the formulation. Although routine assessments of degradation following defined UV dosages are performed, there is a fundamental lack of understanding regarding the intermediates, transient reactive species, and radicals formed during illumination, as well as their lifetimes and immediate impact post-illumination. In this study, we used light-coupled NMR spectroscopy to monitor in situ live spectral changes in sealed samples during and after UV-A illumination of different formulations of four mAbs without added photosensitizers. We observed a complex evolution of spectra, reflecting the appearance within minutes of transient radicals during illumination and persisting for minutes to tens of minutes after the light was switched off. Both mAb and excipient signals were strongly affected by illumination, with some exhibiting fast irreversible photodegradation and others exhibiting partial recovery in the dark. These effects varied depending on the mAb and the presence of excipients, such as polysorbate 80 (PS80) and methionine. Complementary ex situ high-performance size-exclusion chromatography analysis of the same formulations post-UV exposure in the chamber revealed significant loss of purity, confirming formulation-dependent degradation. Both approaches suggested the presence of degradation processes initiated by light but continuing in the dark. Further studies on photoreaction intermediates and transient reactive species may help mitigate the impact of light on biopharmaceutical degradation.
Collapse
Affiliation(s)
- Jack E. Bramham
- Department
of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| | - Yujing Wang
- Dosage
Form Design & Development, BioPharmaceutical
Development, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Stephanie A. Moore
- Dosage
Form Design & Development, BioPharmaceutical
Development, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Alexander P. Golovanov
- Department
of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
3
|
Li M, Beaumont VA, Akbar S, Duncan H, Creasy A, Wang W, Sackett K, Marzilli L, Rouse JC, Kim HY. Comprehensive characterization of higher order structure changes in methionine oxidized monoclonal antibodies via NMR chemometric analysis and biophysical approaches. MAbs 2024; 16:2292688. [PMID: 38117548 PMCID: PMC10761137 DOI: 10.1080/19420862.2023.2292688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
The higher order structure (HOS) of monoclonal antibodies (mAbs) is an important quality attribute with strong contribution to clinically relevant biological functions and drug safety. Due to the multi-faceted nature of HOS, the synergy of multiple complementary analytical approaches can substantially improve the understanding, accuracy, and resolution of HOS characterization. In this study, we applied one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) spectroscopy coupled with chemometric analysis, as well as circular dichroism (CD), differential scanning calorimetry (DSC), and fluorescence spectroscopy as orthogonal methods, to characterize the impact of methionine (Met) oxidation on the HOS of an IgG1 mAb. We used a forced degradation method involving concentration-dependent oxidation by peracetic acid, in which Met oxidation is site-specifically quantified by liquid chromatography-mass spectrometry. Conventional biophysical techniques report nuanced results, in which CD detects no change to the secondary structure and little change in the tertiary structure. Yet, DSC measurements show the destabilization of Fab and Fc domains due to Met oxidation. More importantly, our study demonstrates that 1D and 2D NMR and chemometric analysis can provide semi-quantitative analysis of chemical modifications and resolve localized conformational changes with high sensitivity. Furthermore, we leveraged a novel 15N-Met labeling technique of the antibody to directly observe structural perturbations at the oxidation sites. The NMR methods described here to probe HOS changes are highly reliable and practical in biopharmaceutical characterization.
Collapse
Affiliation(s)
- Mingyue Li
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| | - Victor A. Beaumont
- Pfizer, Inc. Pharmaceutical Sciences Small Molecules, Analytical Research and Development, Sandwich, United Kingdom
| | - Shahajahan Akbar
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| | - Hannah Duncan
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| | - Arch Creasy
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Bioprocess Research and Development, Andover, MA, USA
| | - Wenge Wang
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Bioprocess Research and Development, Andover, MA, USA
| | - Kelly Sackett
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| | - Lisa Marzilli
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| | - Jason C. Rouse
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| | - Hai-Young Kim
- Pfizer, Inc. BioTherapeutics Pharmaceutical Sciences, Analytical Research and Development, Andover, MA, USA
| |
Collapse
|
4
|
Song J, Taraban M, Yu YB, Lu L, Biswas PG, Xu W, Xi H, Bhambhani A, Hu G, Su Y. In-situ biophysical characterization of high-concentration protein formulations using wNMR. MAbs 2024; 16:2304624. [PMID: 38299343 PMCID: PMC10841025 DOI: 10.1080/19420862.2024.2304624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
High-concentration protein formulation is of paramount importance in patient-centric drug product development, but it also presents challenges due to the potential for enhanced aggregation and increased viscosity. The analysis of critical quality attributes often necessitates the transfer of samples from their primary containers together with sample dilution. Therefore, there is a demand for noninvasive, in situ biophysical methods to assess protein drug products directly in primary sterile containers, such as prefilled syringes, without dilution. In this study, we introduce a novel application of water proton nuclear magnetic resonance (wNMR) to evaluate the aggregation propensity of a high-concentration drug product, Dupixent® (dupilumab), under stress conditions. wNMR results demonstrate a concentration-dependent, reversible association of dupilumab in the commercial formulation, as well as irreversible aggregation when exposed to accelerated thermal stress, but gradually reversible aggregation when exposed to freeze and thaw cycles. Importantly, these results show a strong correlation with data obtained from established biophysical analytical tools widely used in the pharmaceutical industry. The application of wNMR represents a promising approach for in situ noninvasive analysis of high-concentration protein formulations directly in their primary containers, providing valuable insights for drug development and quality assessment.
Collapse
Affiliation(s)
- Jing Song
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Marc Taraban
- University of Maryland School of Pharmacy and Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Y. Bruce Yu
- University of Maryland School of Pharmacy and Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Lynn Lu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| | - Pallavi Guha Biswas
- University of Maryland School of Pharmacy and Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Wei Xu
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Hanmi Xi
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Akhilesh Bhambhani
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| | - Guangli Hu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, USA
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| |
Collapse
|