1
|
Álvarez-Guerra I, Block E, Broeskamp F, Gabrijelčič S, Infant T, de Ory A, Habernig L, Andréasson C, Levine TP, Höög JL, Büttner S. LDO proteins and Vac8 form a vacuole-lipid droplet contact site to enable starvation-induced lipophagy in yeast. Dev Cell 2024; 59:759-775.e5. [PMID: 38354739 DOI: 10.1016/j.devcel.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/15/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Lipid droplets (LDs) are fat storage organelles critical for energy and lipid metabolism. Upon nutrient exhaustion, cells consume LDs via gradual lipolysis or via lipophagy, the en bloc uptake of LDs into the vacuole. Here, we show that LDs dock to the vacuolar membrane via a contact site that is required for lipophagy in yeast. The LD-localized LDO proteins carry an intrinsically disordered region that directly binds vacuolar Vac8 to form vCLIP, the vacuolar-LD contact site. Nutrient limitation drives vCLIP formation, and its inactivation blocks lipophagy, resulting in impaired caloric restriction-induced longevity. We establish a functional link between lipophagy and microautophagy of the nucleus, both requiring Vac8 to form respective contact sites upon metabolic stress. In sum, we identify the tethering machinery of vCLIP and find that Vac8 provides a platform for multiple and competing contact sites associated with autophagy.
Collapse
Affiliation(s)
- Irene Álvarez-Guerra
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Emma Block
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Filomena Broeskamp
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Sonja Gabrijelčič
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Terence Infant
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Ana de Ory
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Tim P Levine
- UCL Institute of Ophthalmology, Bath Street, London EC1V 9EL, UK
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
2
|
Fairman G, Ouimet M. Lipophagy pathways in yeast are controlled by their distinct modes of induction. Yeast 2022; 39:429-439. [PMID: 35652813 DOI: 10.1002/yea.3705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 11/06/2022] Open
Abstract
Lipid droplet (LD) autophagy (lipophagy) is a recently discovered selective form of autophagy and is a pathway for LD catabolism. This ubiquitous process has been an ongoing area of research within the budding yeast, Saccharomyces cerevisiae. Yeast lipophagy phenotypically resembles microautophagy, although it has a distinct set of genetic requirements depending on the mode of induction. This review highlights the similarities and differences between different forms of yeast lipophagy and offers perspectives on how our knowledge of lipophagy in yeast may guide our understanding of this process within mammalian cells to ultimately inform future applications of lipophagy.
Collapse
Affiliation(s)
- Garrett Fairman
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mireille Ouimet
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Rahman MA, Kumar R, Sanchez E, Nazarko TY. Lipid Droplets and Their Autophagic Turnover via the Raft-Like Vacuolar Microdomains. Int J Mol Sci 2021; 22:8144. [PMID: 34360917 PMCID: PMC8348048 DOI: 10.3390/ijms22158144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Although once perceived as inert structures that merely serve for lipid storage, lipid droplets (LDs) have proven to be the dynamic organelles that hold many cellular functions. The LDs' basic structure of a hydrophobic core consisting of neutral lipids and enclosed in a phospholipid monolayer allows for quick lipid accessibility for intracellular energy and membrane production. Whereas formed at the peripheral and perinuclear endoplasmic reticulum, LDs are degraded either in the cytosol by lipolysis or in the vacuoles/lysosomes by autophagy. Autophagy is a regulated breakdown of dysfunctional, damaged, or surplus cellular components. The selective autophagy of LDs is called lipophagy. Here, we review LDs and their degradation by lipophagy in yeast, which proceeds via the micrometer-scale raft-like lipid domains in the vacuolar membrane. These vacuolar microdomains form during nutrient deprivation and facilitate internalization of LDs via the vacuolar membrane invagination and scission. The resultant intra-vacuolar autophagic bodies with LDs inside are broken down by vacuolar lipases and proteases. This type of lipophagy is called microlipophagy as it resembles microautophagy, the type of autophagy when substrates are sequestered right at the surface of a lytic compartment. Yeast microlipophagy via the raft-like vacuolar microdomains is a great model system to study the role of lipid domains in microautophagic pathways.
Collapse
Affiliation(s)
- Muhammad Arifur Rahman
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (M.A.R.); (E.S.)
| | - Ravinder Kumar
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Francisco, CA 94143, USA;
| | - Enrique Sanchez
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (M.A.R.); (E.S.)
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (M.A.R.); (E.S.)
| |
Collapse
|
4
|
Huang J, Chen X, Zhang F, Lin M, Lin G, Zhang Z. Lipid Droplet Metabolism Across Eukaryotes: Evidence from Yeast to Humans. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020050026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Wang K, Ma S, Ma Y, Zhao Y, Xing M, Zhou L, Cao D, Lin W. Aurone Derivative Revealing the Metabolism of Lipid Droplets and Monitoring Oxidative Stress in Living Cells. Anal Chem 2020; 92:6631-6636. [PMID: 32272833 DOI: 10.1021/acs.analchem.0c00456] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kangnan Wang
- School of Materials Science and Engineering, Institute of Fluorescent Probes for Biological Imaging, University of Jinan, Jinan, Shandong 250022, China
- Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Shuyue Ma
- School of Materials Science and Engineering, Institute of Fluorescent Probes for Biological Imaging, University of Jinan, Jinan, Shandong 250022, China
| | - Yanyan Ma
- School of Materials Science and Engineering, Institute of Fluorescent Probes for Biological Imaging, University of Jinan, Jinan, Shandong 250022, China
| | - Yuping Zhao
- School of Materials Science and Engineering, Institute of Fluorescent Probes for Biological Imaging, University of Jinan, Jinan, Shandong 250022, China
| | - Miaomiao Xing
- School of Materials Science and Engineering, Institute of Fluorescent Probes for Biological Imaging, University of Jinan, Jinan, Shandong 250022, China
| | - Liyu Zhou
- Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, Guangdong 528308, China
| | - Duxia Cao
- School of Materials Science and Engineering, Institute of Fluorescent Probes for Biological Imaging, University of Jinan, Jinan, Shandong 250022, China
| | - Weiying Lin
- School of Materials Science and Engineering, Institute of Fluorescent Probes for Biological Imaging, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
6
|
Henne M, Goodman JM, Hariri H. Spatial compartmentalization of lipid droplet biogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158499. [PMID: 31352131 PMCID: PMC7050823 DOI: 10.1016/j.bbalip.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that store metabolic energy in the form of neutral lipids (typically triacylglycerols and steryl esters). Beyond being inert energy storage compartments, LDs are dynamic organelles that participate in numerous essential metabolic functions. Cells generate LDs de novo from distinct sub-regions at the endoplasmic reticulum (ER), but what determines sites of LD formation remains a key unanswered question. Here, we review the factors that determine LD formation at the ER, and discuss how they work together to spatially and temporally coordinate LD biogenesis. These factors include lipid synthesis enzymes, assembly proteins, and membrane structural requirements. LDs also make contact with other organelles, and these inter-organelle contacts contribute to defining sites of LD production. Finally, we highlight emerging non-canonical roles for LDs in maintaining cellular homeostasis during stress.
Collapse
Affiliation(s)
- Mike Henne
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Hanaa Hariri
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| |
Collapse
|
7
|
And three’s a party: lysosomes, lipid droplets, and the ER in lipid trafficking and cell homeostasis. Curr Opin Cell Biol 2019; 59:40-49. [DOI: 10.1016/j.ceb.2019.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 01/22/2023]
|
8
|
Hariri H, Speer N, Bowerman J, Rogers S, Fu G, Reetz E, Datta S, Feathers JR, Ugrankar R, Nicastro D, Henne WM. Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. J Cell Biol 2019; 218:1319-1334. [PMID: 30808705 PMCID: PMC6446837 DOI: 10.1083/jcb.201808119] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
Excess fatty acids are toxic to cells but can be sequestered as triacylglycerides in lipid droplets. Hariri et al. show that the tethering protein Mdm1 spatially regulates this process at the junction between the endoplasmic reticulum and the yeast vacuole. These findings suggest that Mdm1 can drive spatially defined lipid droplet production to maintain cell homeostasis and protect against lipotoxicity. Lipid droplets (LDs) serve as cytoplasmic reservoirs for energy-rich fatty acids (FAs) stored in the form of triacylglycerides (TAGs). During nutrient stress, yeast LDs cluster adjacent to the vacuole/lysosome, but how this LD accumulation is coordinated remains poorly understood. The ER protein Mdm1 is a molecular tether that plays a role in clustering LDs during nutrient depletion, but its mechanism of function remains unknown. Here, we show that Mdm1 associates with LDs through its hydrophobic N-terminal region, which is sufficient to demarcate sites for LD budding. Mdm1 binds FAs via its Phox-associated domain and coenriches with fatty acyl–coenzyme A ligase Faa1 at LD bud sites. Consistent with this, loss of MDM1 perturbs free FA activation and Dga1-dependent synthesis of TAGs, elevating the cellular FA level, which perturbs ER morphology and sensitizes yeast to FA-induced lipotoxicity. We propose that Mdm1 coordinates FA activation adjacent to the vacuole to promote LD production in response to stress, thus maintaining ER homeostasis.
Collapse
Affiliation(s)
- Hanaa Hariri
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Natalie Speer
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jade Bowerman
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sean Rogers
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gang Fu
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Evan Reetz
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sanchari Datta
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - J Ryan Feathers
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rupali Ugrankar
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniela Nicastro
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - W Mike Henne
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
9
|
Monson EA, Crosse KM, Das M, Helbig KJ. Lipid droplet density alters the early innate immune response to viral infection. PLoS One 2018; 13:e0190597. [PMID: 29293661 PMCID: PMC5749834 DOI: 10.1371/journal.pone.0190597] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/17/2017] [Indexed: 12/30/2022] Open
Abstract
The cellular localisation of many innate signalling events following viral infection has yet to be elucidated, however there has been a few cases in which membranes of certain cellular organelles have acted as platforms to these events. Of these, lipid droplets (LDs) have recently been identified as signalling platforms for innate TLR7 and 9 signalling. Despite their wide range of similar roles in various metabolic pathways, LDs have been overlooked as potential platforms for antiviral innate signalling events. This study established an in vitro model to evaluate the efficiency of the early innate immune response in cells with reduced LD content to the viral mimics, dsDNA and dsRNA, and Sendai viral infection. Using RT-qPCR, the expression of IFN-β and IFN-λ was quantified following stimulation along with the expression of specific ISGs. Luciferase based assays evaluated the combined expression of ISRE-promoter driven ISGs under IFN-β stimulation. Cellular LD content did not alter the entry of fluorescently labelled viral mimics into cells, but significantly decreased the ability of both Huh-7 and HeLa cells to produce type I and III IFN, as well as downstream ISG expression, indicative of an impeded innate immune response. This observation was also seen during Sendai virus infection of HeLa cells, where both control and LD reduced cells replicated the virus to the same level, but a significantly impaired type I and III IFN response was observed in the LD reduced cells. In addition to altered IFN production, cells with reduced LD content exhibited decreased expression of specific antiviral ISGs: Viperin, IFIT-1 and OAS-1 under IFN-β stimulation; However the overall induction of the ISRE-promoter was not effected. This study implicates a role for LDs in an efficient early innate host response to viral infection and future work will endeavour to determine the precise role these important organelles play in induction of an antiviral response.
Collapse
Affiliation(s)
- Ebony A Monson
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria
| | - Keaton M Crosse
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria
| | - Mithun Das
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria
| | - Karla J Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria
| |
Collapse
|
10
|
Barbosa AD, Siniossoglou S. Function of lipid droplet-organelle interactions in lipid homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1459-1468. [DOI: 10.1016/j.bbamcr.2017.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 12/20/2022]
|