1
|
Altamura E, Albanese P, Milano F, Giotta L, Trotta M, Ferretta A, Cocco T, Mavelli F. Optimizing Enzymatic Photo‐Redox Cycles by a Hybrid Protein Complex Chain. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emiliano Altamura
- Department of Chemistry University of Bari “Aldo Moro” Via Orabona 4 70125 Bari (Italy)
| | - Paola Albanese
- Department of Chemistry University of Bari “Aldo Moro” Via Orabona 4 70125 Bari (Italy)
| | - Francesco Milano
- Institute of Science and Food Production (ISPA) Consiglio Nazionale delle Ricerche (CNR) Strada Provinciale Lecce-Monteroni Ecotekne 73100 Lecce Italy
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) University of Salento Strada Provinciale Lecce-Monteroni Ecotekne 73100 Lecce Italy
| | - Massimo Trotta
- (IPCF-CNR Istituto per i Processi Chimico Fisici Consiglio Nazionale delle Ricerche (CNR) Via Orabona 4 70125 Bari Italy
| | - Anna Ferretta
- Department of Basic Medical Sciences Neurosciences and Sense Organs University of Bari Aldo Moro Italy
| | - Tiziana Cocco
- Department of Basic Medical Sciences Neurosciences and Sense Organs University of Bari Aldo Moro Italy
| | - Fabio Mavelli
- Department of Chemistry University of Bari “Aldo Moro” Via Orabona 4 70125 Bari (Italy)
| |
Collapse
|
2
|
Abstract
Either stereo reactants or stereo catalysis from achiral or chiral molecules are a prerequisite to obtain pure enantiomeric lipid derivatives. We reviewed a few plausibly organic syntheses of phospholipids under prebiotic conditions with special attention paid to the starting materials as pro-chiral dihydroxyacetone and dihydroxyacetone phosphate (DHAP), which are the key molecules to break symmetry in phospholipids. The advantages of homochiral membranes compared to those of heterochiral membranes were analysed in terms of specific recognition, optimal functions of enzymes, membrane fluidity and topological packing. All biological membranes contain enantiomerically pure lipids in modern bacteria, eukarya and archaea. The contemporary archaea, comprising of methanogens, halobacteria and thermoacidophiles, are living under extreme conditions reminiscent of primitive environment and may indicate the origin of one ancient evolution path of lipid biosynthesis. The analysis of the known lipid metabolism reveals that all modern cells including archaea synthetize enantiomerically pure lipid precursors from prochiral DHAP. Sn-glycerol-1-phosphate dehydrogenase (G1PDH), usually found in archaea, catalyses the formation of sn-glycerol-1-phosphate (G1P), while sn-glycerol-3-phosphate dehydrogenase (G3PDH) catalyses the formation of sn-glycerol-3-phosphate (G3P) in bacteria and eukarya. The selective enzymatic activity seems to be the main strategy that evolution retained to obtain enantiomerically pure lipids. The occurrence of two genes encoding for G1PDH and G3PDH served to build up an evolutionary tree being the basis of our hypothesis article focusing on the evolution of these two genes. Gene encoding for G3PDH in eukarya may originate from G3PDH gene found in rare archaea indicating that archaea appeared earlier in the evolutionary tree than eukarya. Archaea and bacteria evolved probably separately, due to their distinct respective genes coding for G1PDH and G3PDH. We propose that prochiral DHAP is an essential molecule since it provides a convergent link between G1DPH and G3PDH. The synthesis of enantiopure phospholipids from DHAP appeared probably firstly in the presence of chemical catalysts, before being catalysed by enzymes which were the products of later Darwinian selection. The enzymes were probably selected for their efficient catalytic activities during evolution from large libraries of vesicles containing amino acids, carbohydrates, nucleic acids, lipids, and meteorite components that induced symmetry imbalance.
Collapse
|
3
|
Abstract
Although prebiotic condensations of glycerol, phosphate and fatty acids produce phospholipid esters with a racemic backbone, most experimental studies on vesicles intended as protocell models have been carried out by employing commercial enantiopure phospholipids. Current experimental research on realistic protocell models urgently requires racemic phospholipids and efficient synthetic routes for their production. Here we propose three synthetic pathways starting from glycerol or from racemic solketal (α,β-isopropylidene-dl-glycerol) for the gram-scale production (up to 4 g) of racemic phospholipid ester precursors. We describe and compare these synthetic pathways with literature data. Racemic phosphatidylcholines and phosphatidylethanolamines were obtained in good yields and high purity from 1,2-diacylglycerols. Racemic POPC (rac-POPC, (R,S)-1-palmitoyl-2-oleoyl-3-phosphocholine), was used as a model compound for the preparation of giant vesicles (GVs). Confocal laser scanning fluorescence microscopy was used to compare GVs prepared from enantiopure (R)-POPC), racemic POPC (rac-POPC) and a scalemic mixture (scal-POPC) of (R)-POPC enriched with rac-POPC. Vesicle morphology and size distribution were similar among the different (R)-POPC, rac-POPC and scal-POPC, while calcein entrapments in (R)-POPC and in scal-POPC were significantly distinct by about 10%.
Collapse
|
4
|
Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach. DATA 2020. [DOI: 10.3390/data5020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this theoretical work, we analyse the kinetics of charge recombination reaction after a light excitation of the Reaction Centres extracted from the photosynthetic bacterium Rhodobacter sphaeroides and reconstituted in small unilamellar phospholipid vesicles. Due to the compartmentalized nature of liposomes, vesicles may exhibit a random distribution of both ubiquinone molecules and the Reaction Centre protein complexes that can produce significant differences on the local concentrations from the average expected values. Moreover, since the amount of reacting species is very low in compartmentalized lipid systems the stochastic approach is more suitable to unveil deviations of the average time behaviour of vesicles from the deterministic time evolution.
Collapse
|
5
|
Stano P. Gene Expression Inside Liposomes: From Early Studies to Current Protocols. Chemistry 2019; 25:7798-7814. [DOI: 10.1002/chem.201806445] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA)University of Salento, Ecotekne 73100 Lecce Italy
| |
Collapse
|