1
|
Azadi E, Dinari M. Green and Facile Preparation of Covalent Organic Frameworks Based on Reaction Medium for Advanced Applications. Chemistry 2023; 29:e202301837. [PMID: 37640690 DOI: 10.1002/chem.202301837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Covalent organic frameworks (COFs), as a new class of crystalline, well-ordered, and porous materials with intermittent constructions, are formed via organic structural parts connected through covalent bonds. These materials have been employed in several fields comprising pollutant adsorption and separation, catalysis, electrical conductivity, gas storage, etc. The preparation of COFs is mainly applied in tubes with high temperatures and degassing treatment. Furthermore, the reaction medium is involved in toxic organic solvents like toluene, dioxane, mesitylene, acetonitrile, and so on. Hence, discovering clean medium and green approaches has attracted wide attention. Recently, facile, less dangerous, and greener methods have been developed for COFs synthesis in diverse applications like performing the reaction at ambient temperature or employing aqueous solvents, ionic liquids, and a mixture of organic solvents/water. This review article summarizes the eco-friendly production approaches of COFs for diverse applications.
Collapse
Affiliation(s)
- Elham Azadi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
2
|
Madadi Mahani N, Mostaghni F, Shafiekhani H. Cuspareine as alkaloid against COVID-19 designed with ionic liquids: DFT and docking molecular approaches. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 231:112447. [PMID: 35483276 PMCID: PMC9020645 DOI: 10.1016/j.jphotobiol.2022.112447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cuspareine as an antiviral alkaloid can be used in the treatment of COVID-19. In this study, we introduced the ionic liquids (ILs) concluded cuspareinium as a cation with CH3COO-, CF3COO-, and PF6 as anions. The optimized geometry, thermodynamic parameters, and reactivity descriptors were calculated with density functional theory (DFT) approach and time-dependent density functional theory (TD-DFT) using B3LYP/6-311G. In addition, the UV and IR spectra of the introduced ILs were investigated. Based on DFT calculation, the designed IL CH3COO- can be to the most suitable anions due to most solubility in the water. DFT studies displayed that all the introduced ILs have more polarity than pristine cuspareine and CH3COO--cuspareine is the most polarity due to high dipole moment. Also, the thermo- chemical data of the designed ionic liquids revealed that PF6-cuspareine is distinguished to be stable. A molecular docking study of the designed ILs with 6 LU7 protease was performed to display interactions and binding energy. Results of molecular docking displayed that CH3COO- ion liquid has the highest binding energy (- 7.20 kcal/mol) and Ala7, and Lys 5 residues are involved in an interaction. DFT and molecular docking studies of cuspareine as alkaloid based on ionic liquids can be helpful to for more pharmaceutical and biological researches of cuspareine as an antiviral agent against COVID-19.
Collapse
Affiliation(s)
| | - Fatemeh Mostaghni
- Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Iran
| | - Homa Shafiekhani
- Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Iran
| |
Collapse
|
3
|
Zullo V, Iuliano A, Guazzelli L. Sugar-Based Ionic Liquids: Multifaceted Challenges and Intriguing Potential. Molecules 2021; 26:2052. [PMID: 33916695 PMCID: PMC8038380 DOI: 10.3390/molecules26072052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/29/2023] Open
Abstract
Carbohydrates represent a promising option in transitioning from oil-based chemical resources to renewable ones, with the goal of developing chemistries for a sustainable future. Cellulose, hemicellulose, and largely available monosaccharides already provide useful chemical building blocks, so-called platform chemicals, such as levulinic acid and hydroxymethyl furfural, as well as solvents like cyrene or gamma-valerolactone. Therefore, there is great anticipation for novel applications involving materials and chemicals derived from sugars. In the field of ionic liquids (ILs), sugar-based ILs have been overlooked for a long time, mainly on account of their multistep demanding preparation. However, exploring new strategies for accessing sugar-based ILs, their study, and their exploitation, are attracting increasing interest. This is due to the growing concerns about the negative (eco)toxicity profile of most ILs in conjunction with their non-sustainable nature. In the present review, a literature survey concerning the development of sugar-based ILs since 2011 is presented. Their preparation strategies and thermal behavior analyses, sorted by sugar type, make up the first two sections with the intention to provide the reader with a useful guide. A final overview of the potential applications of sugar-based ILs and their future perspectives complement the present analysis.
Collapse
Affiliation(s)
- Valerio Zullo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy; (V.Z.); (A.I.)
| | - Anna Iuliano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy; (V.Z.); (A.I.)
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 33, 56126 Pisa, Italy
| |
Collapse
|
4
|
Ali R, Chinnam AK, Aswar VR. The Double and Triple Role of L-(+)-tartaric Acid and Dimethyl Urea: A Prevailing Green Approach in Organic Synthesis. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210111111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The deep eutectic mixtures (DESs), introduced as a novel alternative to usual volatile
organic solvents for organic transformations, have attracted tremendous attention of the
research community because of their low cost, negligible vapour pressure, low toxicity, biodegradability,
recyclability, insensitivity towards moisture, and ready availability from bulk
renewable resources. Although the low melting mixture of dimethyl urea (DMU)/L-(+)-
tartaric acid (TA) is still in infancy, it is very effective as it plays multiple roles such as solvent,
catalyst and/or reagent in the same pot for many crucial organic transformations. These
unique properties of the DMU/TA mixture prompted us to provide a quick overview of where
the field stands presently and where it might be going in the near future. To our best knowledge,
no review dealing with the applications of a low melting mixture of DMU/TA appeared
in the literature except the one published in 2017, describing only the chemistry of indole systems. Therefore, we
intended to reveal the developments of this versatile, low melting mixture in the modern organic synthesis since its
first report in 2011 by Köenig’s team to date. Hopefully, the present review article will be useful to the researcher
working not only in the arena of synthetic organic chemistry but also to the scientists working in other branches of
science and technology.
Collapse
Affiliation(s)
- Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Ajay Kumar Chinnam
- Department of Chemistry, University of Idaho, Moscow, Idaho, 83844-2343, United States
| | - Vikas R. Aswar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
5
|
Abstract
:
The supported ionic liquids have shown immense potential for numerous applications
in catalysis and separation science. In the present review, the remarkable contribution
of supported ionic liquids has been highlighted. The main emphasis has been laid on
describing the facile separation of gas from binary gas mixtures owing to the capability of
selective transport of permeable gases across supported membranes and removal of environmentally
hazard sulfur compounds from fuels. The catalytic action of supported ionic
liquids has been discussed in other applications such as biodiesel (biofuel) synthesis by
transesterification/esterification processes, waste CO2 fixation into advantageous cyclic
carbonates, and various chemical transformations in organic green synthesis. This review
enclosed a maximum of the published data of the last ten years and also recently accomplished
work concerning applications in various research areas like separation sciences, chemical transformations
in organic green synthesis, biofuel synthesis, waste CO2 fixation, and purification of fuels by desulfurization.
Collapse
Affiliation(s)
- Pawanpreet Kaur
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology Longowal, Sangrur, India
| | - Harish Kumar Chopra
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology Longowal, Sangrur, India
| |
Collapse
|
6
|
Affiliation(s)
- Martin Obst
- Institut für Organische Chemie; Universität Regensburg; Universitätsstraße 31 93040 Regensburg Germany
| | - Burkhard König
- Institut für Organische Chemie; Universität Regensburg; Universitätsstraße 31 93040 Regensburg Germany
| |
Collapse
|
7
|
Gatard S, Plantier-Royon R, Rémond C, Muzard M, Kowandy C, Bouquillon S. Preparation of new β-D-xyloside- and β-D-xylobioside-based ionic liquids through chemical and/or enzymatic reactions. Carbohydr Res 2017; 451:72-80. [PMID: 28968549 DOI: 10.1016/j.carres.2017.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
Several tetraalkylphosphonium and tetraalkylammonium salts containing xyloside- and xylobioside-based anionic moieties have been prepared. Two stereoselective routes have been developed: i) a chemical pathway in four steps from D-xylose, and ii) a chemoenzymatic pathway directly from biomass-derived xylans. These salts displayed interesting properties as ionic liquids. Their structures have been correlated to their thermal properties (melting, glass transition and decomposition temperatures).
Collapse
Affiliation(s)
- S Gatard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France.
| | - R Plantier-Royon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - C Rémond
- UMR FARE 614, Fractionnement des AgroRessources et Environnement, Chaire AFERE, Université de Reims-Champagne-Ardenne, INRA, 51686 Reims Cedex, France
| | - M Muzard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - C Kowandy
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - S Bouquillon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France.
| |
Collapse
|
8
|
Guajardo N, Carlesi C, Schrebler R, Morales J. Applications of Liquid/Liquid Biphasic Oxidations by Hydrogen Peroxide with Ionic Liquids or Deep Eutectic Solvents. Chempluschem 2016; 82:165-176. [PMID: 31961556 DOI: 10.1002/cplu.201600594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Indexed: 11/09/2022]
Abstract
This Minireview focuses on recent applications of ionic liquids (ILs) and deep eutectic solvents (DESs) in biphasic oxidations in which the oxidizing agent corresponds to hydrogen peroxide. Biphasic reactions are accomplished when the substrate presents low or moderate solubility in aqueous (polar) systems and/or when separation of products and byproduct is an issue. The properties of the IL and DES allows the reaction activity to be intensified. On the other hand, the high chemical stability of the ionic solvents allows the use of hydrogen peroxide to minimize solvent degradation and unwanted byproducts. The experimental evidence presented herein shows that ILs and DESs can be used as cocatalysts, catalysts, and solvents to achieve enhanced yields and conversions. The process advantages, in terms of a reduction of volatile solvents, improve the safety and use of the oxidizing agent, which implies the possibility of developing new process improvements in the future.
Collapse
Affiliation(s)
- Nadia Guajardo
- Centro de Desarrollo y Transferencia Tecnológica (CEDYTEC), Facultad de Ingeniería, Ciencias y Tecnología, Universidad Bernardo O'Higgins, Avda. Viel, 1497, Santiago, Chile.,IONCHEM Ltda, Avda. Diego Portales 925, 301, Viña del Mar, Chile
| | - Carlos Carlesi
- Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Avda. Brasil, 2162, Valparaíso, Chile
| | | | - Jaime Morales
- Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Avda. Brasil, 2162, Valparaíso, Chile
| |
Collapse
|
9
|
Gallou F, Guo P, Parmentier M, Zhou J. A General and Practical Alternative to Polar Aprotic Solvents Exemplified on an Amide Bond Formation. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00190] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Pengfei Guo
- Chemical & Analytical Development, Suzhou Novartis Pharma Technology Company Limited, Changshu, Jiangsu 215537, China
| | - Michael Parmentier
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Jianguang Zhou
- Chemical & Analytical Development, Suzhou Novartis Pharma Technology Company Limited, Changshu, Jiangsu 215537, China
| |
Collapse
|
10
|
Gholinejad M, Razeghi M, Ghaderi A, Biji P. Palladium supported on phosphinite functionalized Fe3O4 nanoparticles as a new magnetically separable catalyst for Suzuki–Miyaura coupling reactions in aqueous media. Catal Sci Technol 2016. [DOI: 10.1039/c5cy00821b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel phosphinite functionalized magnetic (Fe3O4) nanoparticles having silica nanoshells containing an imidazolium ionic liquid moiety have been successfully synthesized and used as a support and stabilizer for palladium nanoparticles.
Collapse
Affiliation(s)
- Mohammad Gholinejad
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Gavazang
- Iran
| | - Mehran Razeghi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Gavazang
- Iran
| | - Arash Ghaderi
- Department of Chemistry, College of Sciences
- Hormozgan University
- Bandar Abbas
- Iran
| | - Pullithadathil Biji
- Nanotech Research
- Innovation and Incubation Center
- PSG Institute of Advanced Studies
- Coimbatore-641 004
- India
| |
Collapse
|