1
|
Esan OO, Okanlawon AA, Ogunro BN, Abiola JO, Olaogun SC, Aliyu VA. Seasonal variation of mycotoxin levels in poultry feeds and feed ingredients in Oyo State, Nigeria. Mycotoxin Res 2024; 40:319-325. [PMID: 38536554 DOI: 10.1007/s12550-024-00530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
Mycotoxins pose a major problem to poultry production as a result of feed contamination which has deleterious consequences such as production losses and human health risks. A total of 158 chicken feed samples were randomly collected from 46 consenting poultry farms in Oyo State throughout the wet season (April-October; 91 samples) and the dry season (November-March; 67 samples), including compounded feed (n = 129) and feed ingredients (n = 29). Samples were promptly transported to the laboratory in sterile plastic vials for lateral flow assay for mycotoxins using six different commercial mycotoxin test kits each for aflatoxin B1, zearalenone, deoxynivalenol, ochratoxin A, fumonisin, and T-2 toxin/HT-2 toxin. Summary values of mycotoxin levels (µg/kg) in the feedstuffs were represented as frequency or median (and range). Fisher exact or Mann-Whitney U tests were carried out where appropriate at α = 0.05. Every sample contained at least four mycotoxins. Aflatoxins and fumonisin co-occurred in 80% of the samples. Aflatoxin and fumonisin concentrations were above the permissible limits in 32.9% and 18.4% respectively in feedstuff sampled in the dry season while the values were 17.1% and 6.3% respectively during the wet season. Among feed ingredients, peanut cake and maize had the highest median concentration of aflatoxin and fumonisin, respectively. Median aflatoxin concentration in the feedstuff was significantly higher than the permissible limit irrespective of season. There is a need to frequently monitor mycotoxin levels of feed and feed ingredients and improve storage system for feed ingredients in order to reduce the risk associated with high mycotoxin intake in poultry.
Collapse
Affiliation(s)
- Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abioye Abiodun Okanlawon
- Veterinary Diagnostic Laboratory for Poultry and Livestock Disease, CHI Farms Ltd, Ibadan, Nigeria
| | | | - John Olusoji Abiola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sunday Charles Olaogun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Victor Ayodele Aliyu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Kassaw TS, Megerssa YC, Woldemariyam FT. Occurrence of Aflatoxins in Poultry Feed in Selected Chicken Rearing Villages of Bishoftu Ethiopia. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2022; 13:277-286. [PMID: 36277466 PMCID: PMC9586162 DOI: 10.2147/vmrr.s384148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022]
Abstract
Background Aflatoxins (AFs) are major contaminants of feed used in the poultry industry that negatively affect animal and human health. In Ethiopia, previous studies on AFs mainly considered cattle feed and milk but scarce information exists for poultry feeds. Methods The aim of this study was to determine the occurrence of AFs in poultry feed in selected chicken rearing villages of Bishoftu. The study was conducted from December 2018 to May 2019. Thirty-three compound poultry feed samples were collected and analyzed for aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and total AFs (AFT) using high performance liquid chromatography (HPLC). The moisture content of the samples was also determined. Results The result indicated that 31 (94%) from a total of 33 samples were contaminated with AFs. The mean levels of AFB1, AFB2, AFG1, AFG2 and AFT were 70.11 µg/kg, 13.50 µg/kg, 88.55 µg/kg, 18.00 µg/kg and 190.18 µg/kg, respectively. This study found AFs at a level above the limit of FDA regulatory levels of 20 µg/kg in 25 (72.75%) samples for AFT and 22 (66.67%) samples for AFB1. The analysis of moisture content of the samples, ranges from 7.33% to 11.17%, indicating all were at optimal value (<12%). Conclusion The study showed the high contamination of AFs in poultry feeds with optimal moisture content and hence further investigations are needed to address the cause. The study also supports the need for preventive strategies of AFs contamination in poultry feeds in Bishoftu.
Collapse
Affiliation(s)
- Tadesse Sisay Kassaw
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Yoseph Cherinet Megerssa
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia,Correspondence: Yoseph Cherinet Megerssa, Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia, Tel +251911804383, Email
| | - Fanos Tadesse Woldemariyam
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia,KU Leuven, Department of Biosystems, Division of Animal and Human Health Engineering, Laboratory of Host Pathogen Interaction, Leuven, Belgium
| |
Collapse
|
3
|
Aasa A, Fru F, Adelusi O, Oyeyinka S, Njobeh P. A review of toxigenic fungi and mycotoxins in feeds and food commodities in West Africa. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fungal contamination is a threat to food safety in West Africa with implications for food and feed due to their climate, which is characterised by high temperatures and high relative humidity, which are environmental favourable for fast fungal growth and mycotoxin production. This report gives perspective on studies on toxigenic fungi (Aspergillus, Fusarium and Penicillium) and their toxins, mainly aflatoxins, fumonisins and ochratoxins commonly found in some West African countries, including Benin, Burkina Faso, Gambia, Ghana, Ivory Coast, Mali, Nigeria, Senegal, Sierra Leone, and Togo. Only four of these countries have mycotoxins regulations in place for feeds and food products (Ghana, Ivory Coast, Nigeria, and Senegal). Food commodities that are widely consumed and were thoroughly investigated in this region include cereals, peanuts, cassava chips (flakes), cassava flour, chilies, peanuts, locust beans, melon, and yam products. In conclusion, authorities and scientists needed to consider research and approaches to monitor mycotoxins in foods and feeds produced and consumed in West Africa.
Collapse
Affiliation(s)
- A.O. Aasa
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - F.F. Fru
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - O.A. Adelusi
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - S.A. Oyeyinka
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - P.B. Njobeh
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
4
|
Mohammed A, Bekeko Z, Yusufe M, Sulyok M, Krska R. Fungal Species and Multi-Mycotoxin Associated with Post-Harvest Sorghum (Sorghum bicolor (L.) Moench) Grain in Eastern Ethiopia. Toxins (Basel) 2022; 14:toxins14070473. [PMID: 35878211 PMCID: PMC9315719 DOI: 10.3390/toxins14070473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Sorghum is the main staple food crop in developing countries, including Ethiopia. However, sorghum grain quantity and quality are affected by contaminating fungi both under field and post-harvest stage. The aim of the current study was to assessed fungal species and multi-mycotoxins associated with sorghum grain in post-harvest samples collected from eastern Ethiopia. Fungal genera of Aspergillus, Alternaria, Bipolaris, Fusarium, Mucor, Penicillium, and Rhizoctonia were recovered in the infected grain. A liquid chromatography-tandem mass spectrometric (LC-MS/MS) was used for quantification of multiple mycotoxins/fungal metabolites. Overall, 94 metabolites were detected and grouped into eight categories. All metabolites were detected either in one or more samples. Among major mycotoxins and derivatives, deoxynivalenol (137 μg/kg), zearalenone (121 μg/kg), ochratoxin A (115 μg/kg), and fumonisin B1 (112 μg/kg) were detected with maximum concentrations, while aflatoxin B1 had relatively lower concentrations (23.6 μg/kg). Different emerging mycotoxins were also detected, with tenuazonic acid (1515 μg/kg) occurring at the maximum concentration among Alternaria metabolites. Fusaric acid (2786 μg/kg) from Fusarium metabolites and kojic acid (4584 μg/kg) were detected with the maximum concentration among Fusarium and Aspergillus metabolites, respectively. Unspecific metabolites were recognized with neoechinulin A (1996 μg/kg) at the maximum concentration, followed by cyclo (L-Pro-L-Tyr) (574 μg/kg) and cyclo (L-Pro-L-Val) (410 μg/kg). Moreover, metabolites form other fungal genera and bacterial metabolites were also detected at varying levels. Apparently, the study revealed that sorghum grains collected across those districts were significantly contaminated with co-occurrences of several mycotoxins. Farmers should be the main target groups to be trained on the improved management of sorghum production.
Collapse
Affiliation(s)
- Abdi Mohammed
- School of Plant Sciences, College of Agriculture and Environmental Sciences, Haramaya University, Dire Dawa P.O. Box 138, Ethiopia;
- Correspondence: ; Tel.: +251-953953442
| | - Zelalem Bekeko
- School of Plant Sciences, College of Agriculture and Environmental Sciences, Haramaya University, Dire Dawa P.O. Box 138, Ethiopia;
| | - Mawardi Yusufe
- Institute of Technology, Food Sciences and Post-harvest Technology, Haramaya University, Dire Dawa P.O. Box 138, Ethiopia;
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna Konrad Lorenzstr. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna Konrad Lorenzstr. 20, A-3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast BT7 1NN, UK
| |
Collapse
|
5
|
Laraba I, Busman M, Geiser DM, O'Donnell K. Phylogenetic Diversity and Mycotoxin Potential of Emergent Phytopathogens Within the Fusarium tricinctum Species Complex. PHYTOPATHOLOGY 2022; 112:1284-1298. [PMID: 34989594 DOI: 10.1094/phyto-09-21-0394-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent studies on multiple continents indicate members of the Fusarium tricinctum species complex (FTSC) are emerging as prevalent pathogens of small-grain cereals, pulses, and other economically important crops. These understudied fusaria produce structurally diverse mycotoxins, among which enniatins (ENNs) and moniliformin (MON) are the most frequent and of greatest concern to food and feed safety. Herein a large survey of fusaria in the Fusarium Research Center and Agricultural Research Service culture collections was undertaken to assess species diversity and mycotoxin potential within the FTSC. A 151-strain collection originating from diverse hosts and substrates from different agroclimatic regions throughout the world was selected from 460 FTSC strains to represent the breadth of FTSC phylogenetic diversity. Evolutionary relationships inferred from a five-locus dataset, using maximum likelihood and parsimony, resolved the 151 strains as 24 phylogenetically distinct species, including nine that are new to science. Of the five genes analyzed, nearly full-length phosphate permease sequences contained the most phylogenetically informative characters, establishing its suitability for species-level phylogenetics within the FTSC. Fifteen of the species produced ENNs, MON, the sphingosine analog 2-amino-14,16-dimethyloctadecan-3-ol (AOD), and the toxic pigment aurofusarin (AUR) on a cracked corn kernel substrate. Interestingly, the five earliest diverging species in the FTSC phylogeny (i.e., F. iranicum, F. flocciferum, F. torulosum, and Fusarium spp. FTSC 8 and 24) failed to produce AOD and MON, but synthesized ENNs and/or AUR. Moreover, our reassessment of nine published phylogenetic studies on the FTSC identified 11 additional novel taxa, suggesting this complex comprises at least 36 species.
Collapse
Affiliation(s)
- Imane Laraba
- ORISE Fellow, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit (MPM), Peoria, IL 61604
| | - Mark Busman
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit (MPM), Peoria, IL 61604
| | - David M Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802
| | - Kerry O'Donnell
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit (MPM), Peoria, IL 61604
| |
Collapse
|
6
|
Spirulina platensis and biosynthesized selenium nanoparticles improve performance, antioxidant status, humoral immunity and dietary and ileal microbial populations of heat-stressed broilers. J Therm Biol 2022; 104:103195. [DOI: 10.1016/j.jtherbio.2022.103195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 12/11/2022]
|
7
|
Ochieng PE, Scippo ML, Kemboi DC, Croubels S, Okoth S, Kang’ethe EK, Doupovec B, Gathumbi JK, Lindahl JF, Antonissen G. Mycotoxins in Poultry Feed and Feed Ingredients from Sub-Saharan Africa and Their Impact on the Production of Broiler and Layer Chickens: A Review. Toxins (Basel) 2021; 13:633. [PMID: 34564637 PMCID: PMC8473361 DOI: 10.3390/toxins13090633] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
The poultry industry in sub-Saharan Africa (SSA) is faced with feed insecurity, associated with high cost of feeds, and feed safety, associated with locally produced feeds often contaminated with mycotoxins. Mycotoxins, including aflatoxins (AFs), fumonisins (FBs), trichothecenes, and zearalenone (ZEN), are common contaminants of poultry feeds and feed ingredients from SSA. These mycotoxins cause deleterious effects on the health and productivity of chickens and can also be present in poultry food products, thereby posing a health hazard to human consumers of these products. This review summarizes studies of major mycotoxins in poultry feeds, feed ingredients, and poultry food products from SSA as well as aflatoxicosis outbreaks. Additionally reviewed are the worldwide regulation of mycotoxins in poultry feeds, the impact of major mycotoxins in the production of chickens, and the postharvest use of mycotoxin detoxifiers. In most studies, AFs are most commonly quantified, and levels above the European Union regulatory limits of 20 μg/kg are reported. Trichothecenes, FBs, ZEN, and OTA are also reported but are less frequently analyzed. Co-occurrences of mycotoxins, especially AFs and FBs, are reported in some studies. The effects of AFs on chickens' health and productivity, carryover to their products, as well as use of mycotoxin binders are reported in few studies conducted in SSA. More research should therefore be conducted in SSA to evaluate occurrences, toxicological effects, and mitigation strategies to prevent the toxic effects of mycotoxins.
Collapse
Affiliation(s)
- Phillis E. Ochieng
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (P.E.O.); (M.-L.S.)
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (P.E.O.); (M.-L.S.)
| | - David C. Kemboi
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya;
- Department of Animal Science, Chuka University, P.O. Box 109-00625, Chuka 00625, Kenya
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya;
| | | | | | - James K. Gathumbi
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya;
| | - Johanna F. Lindahl
- Department of Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya;
- Department of Medical Biochemistry and Microbiology, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O Box 7054, 750 07 Uppsala, Sweden
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
8
|
Changwa R, De Boevre M, De Saeger S, Njobeh PB. Feed-Based Multi-Mycotoxin Occurrence in Smallholder Dairy Farming Systems of South Africa: The Case of Limpopo and Free State. Toxins (Basel) 2021; 13:toxins13020166. [PMID: 33671584 PMCID: PMC7927053 DOI: 10.3390/toxins13020166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/25/2023] Open
Abstract
Mycotoxin contamination of feed does not only cut across food and feed value chains but compromises animal productivity and health, affecting farmers, traders and consumers alike. To aid in the development of a sustainable strategy for mycotoxin control in animal-based food production systems, this study focused on smallholder farming systems where 77 dairy cattle feed samples were collected from 28 smallholder dairy establishments in the Limpopo and Free State provinces of South Africa between 2018 and 2019. Samples were analyzed using a confirmatory UHPLC–MS/MS (Ultra-high performance liquid chromatography-tandem mass spectrometry) method validated for simultaneous detection of 23 mycotoxins in feeds. Overall, mycotoxins assessed were detected across samples with 86% of samples containing at least one mycotoxin above respective decision limits; up to 66% of samples were found to be contaminated with at least three mycotoxins. Findings demonstrated that deoxynivalenol, sterigmatocystin, alternariol and enniatin B were the most common mycotoxins, while low to marginal detection rates were observed for all other mycotoxins with none of the samples containing fusarenon-X, HT-2-toxin and neosolaniol. Isolated cases of deoxynivalenol (maximum: 2385 µg/kg), aflatoxins (AFB1 (maximum: 30.2 µg/kg)/AFG1 (maximum: 23.1 µg/kg)), and zearalenone (maximum: 1793 µg/kg) in excess of local and European regulatory limits were found. Kruskal–Wallis testing for pairwise comparisons showed commercial feed had significantly higher contamination for deoxynivalenol and its acylated derivatives, ochratoxin A and fumonisins (FB1 and FB2), whereas forages had significantly higher alternariol; in addition to significantly higher fumonisin B1 contamination for Limpopo coupled with significantly higher enniatin B and sterigmatocystin for Free State. Statistically significant Spearman correlations (p < 0.01) were also apparent for ratios for deoxynivalenol/fumonisin B1 (rs = 0.587) and zearalenone/alternariol methylether (rs = 0.544).
Collapse
Affiliation(s)
- Rumbidzai Changwa
- Department of Biotechnology and Food Technology, Faculty of Science, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Gauteng 2028, South Africa; (R.C.); (S.D.S.)
| | - Marthe De Boevre
- Center of Excellence in Mycotoxicology & Public Health, Department of Bioanalysis, Ghent University, B-9000 Ghent, Belgium
- Correspondence: (M.D.B.); (P.B.N.)
| | - Sarah De Saeger
- Department of Biotechnology and Food Technology, Faculty of Science, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Gauteng 2028, South Africa; (R.C.); (S.D.S.)
- Center of Excellence in Mycotoxicology & Public Health, Department of Bioanalysis, Ghent University, B-9000 Ghent, Belgium
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Gauteng 2028, South Africa; (R.C.); (S.D.S.)
- Correspondence: (M.D.B.); (P.B.N.)
| |
Collapse
|
9
|
Akinyemi MO, Ayeni KI, Ogunremi OR, Adeleke RA, Oguntoyinbo FA, Warth B, Ezekiel CN. A review of microbes and chemical contaminants in dairy products in sub-Saharan Africa. Compr Rev Food Sci Food Saf 2021; 20:1188-1220. [PMID: 33506591 DOI: 10.1111/1541-4337.12712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Animal milk types in sub-Saharan Africa (SSA) are processed into varieties of products using different traditional methods and are widely consumed by households to support nutritional intake and diet. Dairy products contain several microorganisms, their metabolites, and other chemical compounds, some with health benefits and many others considered as potential health hazards. Consumption of contaminated milk products could have serious health implications for consumers. To access the safety of milk products across SSA, studies in the region investigating the occurrences of pathogens as well as chemical compounds such as heat stable toxins and veterinary drug residues in animal milk and its products were reviewed. This is done with a holistic view in light of the emerging exposome paradigm for improving food safety and consumer health in the region. Herein, we showed that several published studies in SSA applied conventional and/or less sensitive methods in detecting microbial species and chemical contaminants. This has serious implications in food safety because the correct identity of a microbial species and accurate screening for chemical contaminants is crucial for predicting the potential human health effects that undermine the benefits from consumption of these foods. Furthermore, we highlighted gaps in determining the extent of viral and parasitic contamination of milk products across SSA as well as investigating multiple classes of chemical contaminants. Consequently, robust studies should be conducted in this regard. Also, efforts such as development cooperation projects should be initiated by all stakeholders including scientists, regulatory agencies, and policy makers to improve the dairy product chain in SSA in view of safeguarding consumer health.
Collapse
Affiliation(s)
- Muiz O Akinyemi
- Department of Microbiology, Babcock University, Ogun State, Ilishan Remo, Nigeria.,Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Kolawole I Ayeni
- Department of Microbiology, Babcock University, Ogun State, Ilishan Remo, Nigeria
| | - Omotade R Ogunremi
- Department of Biological Sciences, First Technical University, Ibadan, Oyo State, Nigeria
| | - Rasheed A Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Folarin A Oguntoyinbo
- A.R. Smith Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina, 28608, USA
| | - Benedikt Warth
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38, Vienna, 1090, Austria
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ogun State, Ilishan Remo, Nigeria
| |
Collapse
|
10
|
Righetti L, Rolli E, Dellafiora L, Galaverna G, Suman M, Bruni R, Dall’Asta C. Thinking Out of the Box: On the Ability of Zea mays L. to Biotrasform Aflatoxin B1 Into Its Modified Forms. FRONTIERS IN PLANT SCIENCE 2021; 11:599158. [PMID: 33510745 PMCID: PMC7835335 DOI: 10.3389/fpls.2020.599158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
While aflatoxin metabolism in animals has been clarified, very limited information is so far available on the possible biotransformation occurring in plants. Therefore, this work aimed at investigating whether AFB1 metabolites could occur in field-grown infected maize and the putative role of Zea mays L. metabolism in their production. For such scope, asymptomatic in vitro-grown plantlets and in silico evaluations of plant transforming enzymes were used to pinpoint how plants may handle these compounds. Our data demonstrated the role of maize plants in the production of Phase I hydroxylated aflatoxins, including, among others, AFM1, AFM2, and aflatoxicol, and suggest that plant cytochromes may be involved in this biotransformation of AFB1.
Collapse
Affiliation(s)
- Laura Righetti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Enrico Rolli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Michele Suman
- Barilla G.R. F.lli SpA, Advanced Laboratory Research, Parma, Italy
| | - Renato Bruni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | |
Collapse
|
11
|
Kemboi DC, Ochieng PE, Antonissen G, Croubels S, Scippo ML, Okoth S, Kangethe EK, Faas J, Doupovec B, Lindahl JF, Gathumbi JK. Multi-Mycotoxin Occurrence in Dairy Cattle and Poultry Feeds and Feed Ingredients from Machakos Town, Kenya. Toxins (Basel) 2020; 12:toxins12120762. [PMID: 33287105 PMCID: PMC7761711 DOI: 10.3390/toxins12120762] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Mycotoxins are common in grains in sub-Saharan Africa and negatively impact human and animal health and production. This study assessed occurrences of mycotoxins, some plant, and bacterial metabolites in 16 dairy and 27 poultry feeds, and 24 feed ingredients from Machakos town, Kenya, in February and August 2019. We analyzed the samples using a validated multi-toxin liquid chromatography-tandem mass spectrometry method. A total of 153 mycotoxins, plant, and bacterial toxins, were detected in the samples. All the samples were co-contaminated with 21 to 116 different mycotoxins and/or metabolites. The commonly occurring and EU regulated mycotoxins reported were; aflatoxins (AFs) (70%; range 0.2–318.5 μg/kg), deoxynivalenol (82%; range 22.2–1037 μg/kg), ergot alkaloids (70%; range 0.4–285.7 μg/kg), fumonisins (90%; range 32.4–14,346 μg/kg), HT-2 toxin (3%; range 11.9–13.8 μg/kg), ochratoxin A (24%; range 1.1–24.3 μg/kg), T-2 toxin (4%; range 2.7–5.2 μg/kg) and zearalenone (94%; range 0.3–910.4 μg/kg). Other unregulated emerging mycotoxins and metabolites including Alternaria toxins, Aspergillus toxins, bacterial metabolites, cytochalasins, depsipeptides, Fusarium metabolites, metabolites from other fungi, Penicillium toxins, phytoestrogens, plant metabolites, and unspecific metabolites were also detected at varying levels. Except for total AFs, where the average contamination level was above the EU regulatory limit, all the other mycotoxins detected had average contamination levels below the limits. Ninety-six percent of all the samples were contaminated with more than one of the EU regulated mycotoxins. These co-occurrences may cause synergistic and additive health effects thereby hindering the growth of the Kenyan livestock sector.
Collapse
Affiliation(s)
- David Chebutia Kemboi
- Department of Veterinary Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi. P.O. Box 29053, Nairobi 00100, Kenya;
- Department of Animal Science, Chuka University, P.O. Box 109-00625, Chuka 00625, Kenya
| | - Phillis E. Ochieng
- Department of Pharmacology Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (G.A.); (P.E.O.); (S.C.)
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium;
| | - Gunther Antonissen
- Department of Pharmacology Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (G.A.); (P.E.O.); (S.C.)
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Siska Croubels
- Department of Pharmacology Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (G.A.); (P.E.O.); (S.C.)
| | - Marie-Louise Scippo
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium;
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya;
| | | | - Johannes Faas
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (J.F.); (B.D.)
| | - Barbara Doupovec
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (J.F.); (B.D.)
| | - Johanna F. Lindahl
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 05 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
- Correspondence: (J.F.L.); (J.K.G.)
| | - James K. Gathumbi
- Department of Veterinary Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi. P.O. Box 29053, Nairobi 00100, Kenya;
- Correspondence: (J.F.L.); (J.K.G.)
| |
Collapse
|
12
|
Emmanuel K T, Els VP, Bart H, Evelyne D, Els VH, Els D. Carry-over of some Fusarium mycotoxins in tissues and eggs of chickens fed experimentally mycotoxin-contaminated diets. Food Chem Toxicol 2020; 145:111715. [PMID: 32871192 DOI: 10.1016/j.fct.2020.111715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 02/04/2023]
Abstract
Fusarium mycotoxins are fungal contaminants found in different crops intended for human and animal consumption. Due to the co-occurrence of several of mycotoxins, the present study aimed at examining the transfer of these toxins into tissues of broiler chickens and eggs of laying hens fed contaminated diets. After an adaptation period, the chickens were fed contaminated diets containing mg/kg levels of deoxynivalenol (DON), enniatins (ENN A, A1, B, B1) and beauvericin (BEA) and high μg/kg levels of HT-2 toxin (HT-2), T-2 toxin (T-2) and zearalenone (ZEN) during a repletion period of two weeks, followed by a depletion period of two weeks. DON, ZEN, T-2 and HT-2 were not carried out into the skin and the liver of broiler chickens. ENN B (20.5 ± 6.6 μg/kg) and BEA (162 ± 55 μg/kg) were found in the liver, while in the skin their respective concentrations were 50 ± 17 μg/kg and 120 ± 16 μg/kg during the first week of the repletion period. Carry-over rates into liver and skin were higher for BEA (1.6% and 1.2%, respectively) than for ENNs (0.1 and 0.4%, respectively). During the depletion period, ENNs and BEA were eliminated from the skin and the liver. ENN B, ENN B1 and BEA were carried over into eggs at 0.1%, 0.05% and 0.44% upon 2-3 days of feeding the contaminated diet, respectively. These transfers were fully eliminated 9-10 days after feeding the control diet again. These results indicate the transfer of ENN B, ENN B1 and BEA from feed to chicken offal, meat products and eggs at a very low degree, thus marginally contribute to the total dietary intake of these fusariotoxins for consumers. Nevertheless, taking precautionary measures in the field, harvest, transport and storage of the raw materials is required to keep the mycotoxin concentration in feed below the safe levels.
Collapse
Affiliation(s)
- Tangni Emmanuel K
- Sciensano, Physical and Chemical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080, Tervuren, Belgium.
| | - Van Pamel Els
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Huybrechts Bart
- Sciensano, Physical and Chemical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080, Tervuren, Belgium
| | - Delezie Evelyne
- ILVO, Animal Sciences Unit, Scheldeweg 68, 9090, Melle, Belgium
| | - Van Hoeck Els
- Sciensano, Physical and Chemical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080, Tervuren, Belgium
| | - Daeseleire Els
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| |
Collapse
|
13
|
Pro-Inflammatory Effects of NX-3 Toxin Are Comparable to Deoxynivalenol and not Modulated by the Co-Occurring Pro-Oxidant Aurofusarin. Microorganisms 2020; 8:microorganisms8040603. [PMID: 32326355 PMCID: PMC7232499 DOI: 10.3390/microorganisms8040603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
The type A trichothecene NX-3, produced by certain Fusarium graminearum strains, is similar to the mycotoxin deoxynivalenol (DON), with the exception that it lacks the carbonyl moiety at the C-8 position. NX-3 inhibits protein biosynthesis and induces cytotoxicity to a similar extent as DON, but so far, immunomodulatory effects have not been assessed. In the present study, we investigated the impact of NX-3 on the activity of the nuclear factor kappa B (NF-κB) signaling pathway in direct comparison to DON. Under pro-inflammatory conditions (IL-1β treatment), the impact on cytokine mRNA levels of NF-κB downstream genes was studied in human colon cell lines, comparing noncancer (HCEC-1CT) and cancer cells (HT-29). In addition, potential combinatory effects with the co-occurring Fusarium secondary metabolite aurofusarin (AURO), a dimeric naphthoquinone known to induce oxidative stress, were investigated. NX-3 and DON (1 μM, 20 h) significantly activated a NF-κB regulated reporter gene to a similar extent. Both trichothecenes also enhanced transcript levels of the known NF-κB-dependent pro-inflammatory cytokines IL-8, IL-6, TNF-α and IL-1β. Comparing the colon cancer HT-29 and noncancer HCEC-1CT cells, significant differences in cytokine signaling were identified. In contrast, AURO did not affect NF-κB pathway activity and respective cytokine expression levels at the tested concentration. Despite its pro-oxidant potency, the combination with AURO did not significantly affect the immunomodulatory effects of the tested trichothecenes. Taken together, the present study reveals comparable potency of DON and NX-3 with respect to immunomodulatory and pro-inflammatory potential. Consequently, not only DON but also NX-3 should be considered as factors contributing to intestinal inflammatory processes.
Collapse
|
14
|
Aikore MOS, Ortega-Beltran A, Eruvbetine D, Atehnkeng J, Falade TDO, Cotty PJ, Bandyopadhyay R. Performance of Broilers Fed with Maize Colonized by Either Toxigenic or Atoxigenic Strains of Aspergillus flavus with and without an Aflatoxin-Sequestering Agent. Toxins (Basel) 2019; 11:E565. [PMID: 31561495 PMCID: PMC6832921 DOI: 10.3390/toxins11100565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 11/17/2022] Open
Abstract
In warm agricultural areas across the globe, maize, groundnut, and other crops become frequently contaminated with aflatoxins produced primarily by the fungus Aspergillus flavus. Crop contamination with those highly toxic and carcinogenic compounds impacts both human and animal health, as well as the income of farmers and trade. In Nigeria, poultry productivity is hindered by high prevalence of aflatoxins in feeds. A practical solution to decrease crop aflatoxin content is to use aflatoxin biocontrol products based on non-toxin-producing strains of A. flavus. The biocontrol product Aflasafe® was registered in 2014 for use in maize and groundnut grown in Nigeria. Its use allows the production of aflatoxin-safe maize and groundnut. A portion of the maize treated with Aflasafe in Nigeria is being used to manufacture feeds used by the poultry industry, and productivity is improving. One of the conditions to register Aflasafe with the national regulator was to demonstrate both the safety of Aflasafe-treated maize to avian species and the impact of Aflasafe as a public good. Results presented here demonstrate that the use of maize colonized by an atoxigenic strain of Aflasafe resulted in superior (p < 0.05) broiler performance in all evaluated parameters in comparison to broilers fed with toxigenic maize. Use of an aflatoxin-sequestering agent (ASA) was not sufficient to counteract the harmful effects of aflatoxins. Both the safety and public good value of Aflasafe were demonstrated during our study. In Nigeria, the availability of aflatoxin-safe crops as a result of using Aflasafe allows poultry producers to improve their productivity, their income, and the health of consumers of poultry products.
Collapse
Affiliation(s)
- M O Samuel Aikore
- Pathology and Mycotoxin Unit, International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria.
- Department of Animal Nutrition, Federal University of Agriculture, Abeokuta, PMB 2240, Alabata Road, Ogun State 110124, Nigeria.
| | - Alejandro Ortega-Beltran
- Pathology and Mycotoxin Unit, International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria.
| | - Daisy Eruvbetine
- Department of Animal Nutrition, Federal University of Agriculture, Abeokuta, PMB 2240, Alabata Road, Ogun State 110124, Nigeria.
| | - Joseph Atehnkeng
- Pathology and Mycotoxin Unit, International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria.
| | - Titilayo D O Falade
- Pathology and Mycotoxin Unit, International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria.
| | | | - Ranajit Bandyopadhyay
- Pathology and Mycotoxin Unit, International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria.
| |
Collapse
|
15
|
Johnson AM, Abdoulaye T, Ayedun B, Fulton JR, Widmar NJO, Adebowale A, Bandyopadhyay R, Manyong V. Willingness to pay of Nigerian poultry producers and feed millers for aflatoxin‐safe maize. AGRIBUSINESS (NEW YORK, N.Y.) 2019; 36:21621. [PMCID: PMC6990872 DOI: 10.1002/agr.21621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 04/10/2019] [Accepted: 05/23/2019] [Indexed: 06/17/2023]
Abstract
Dietary aflatoxin exposure is a widespread problem in the developing world and causes severe negative health consequences to humans and livestock animals. A new biological control product, called Aflasafe, has been introduced in Nigeria to mitigate aflatoxin contamination of maize in the field and in storage. No known prior work has estimated how much African agribusinesses using maize for animal feed will pay for aflatoxin‐safe maize. This study measured the levels of Aflasafe awareness, surveyed current aflatoxin management practices, and estimated, using choice experiments, willingness to pay (WTP) for aflatoxin‐safe maize by Nigerian poultry producers and feed millers. Data was gathered from 272 orally administered surveys, which included discrete choice experiments examining maize purchasing decisions. Results suggest that the proportion of enterprises that were aware of aflatoxin was found to vary across states. Two latent classes of Nigerian poultry producers and feed millers were identified that were willing to pay average premiums of 4.9% and 30.9%, respectively for maize with 10 parts per billion (ppb) aflatoxin concentration relative to maize with 20 ppb aflatoxin concentration. Both latent classes were, on average, willing to pay larger premiums for maize with 4 ppb aflatoxin concentration. There was evidence that latent class membership, and hence WTP, varied based on awareness of aflatoxin and across geographies.
Collapse
Affiliation(s)
- Andrew M. Johnson
- Department of Agricultural Economics, Purdue University, West Lafayette, Indiana
| | | | - Bamikole Ayedun
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Joan R. Fulton
- Department of Agricultural Economics, Purdue University, West Lafayette, Indiana
| | | | - Akande Adebowale
- International Institute of Tropical Agriculture, IITA‐Abuja Abuja Station, Kubwa Abuja, Nigeria
- Independent Consultant for Deloitte Consulting LLP, United States
| | | | - Victor Manyong
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| |
Collapse
|
16
|
Mgbeahuruike AC, Ejioffor TE, Christian OC, Shoyinka VC, Karlsson M, Nordkvist E. Detoxification of Aflatoxin-Contaminated Poultry Feeds by 3 Adsorbents, Bentonite, Activated Charcoal, and Fuller’s Earth. J APPL POULTRY RES 2018. [DOI: 10.3382/japr/pfy054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Akinmusire OO, El-Yuguda AD, Musa JA, Oyedele OA, Sulyok M, Somorin YM, Ezekiel CN, Krska R. Mycotoxins in poultry feed and feed ingredients in Nigeria. Mycotoxin Res 2018; 35:149-155. [PMID: 30484071 PMCID: PMC6478637 DOI: 10.1007/s12550-018-0337-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 11/30/2022]
Abstract
Mycotoxins are toxic secondary fungal metabolites that can negatively affect animal productivity when ingested through feed. In order to assess mycotoxin contamination of poultry feed and feed ingredients vis-a-vis source tracking of feed contamination in Nigeria, 102 samples of feed (n = 30) and feed ingredients (n = 72) were collected from in-house mills of poultry farms across 12 states of Nigeria and analyzed for multiple mycotoxins using LC/MS-MS. One hundred and forty microbial metabolites were detected in the feed and feed ingredients. The most frequent mycotoxin in the feed was fumonisin B1, occurring in 97% of the samples at mean concentration of 1014 μg kg−1. AFB1 occurred in 83% of the feed samples at mean concentration of 74 μg kg−1 and in all feed ingredients except fish meal and other cereals (millet and rice). Feed samples analyzed in this study were contaminated with at least four mycotoxins: aflatoxins and fumonisin co-occurring in 80% of the samples. Peanut cake and maize contributed the most to the levels of aflatoxin and fumonisin, respectively, in the feed. Consequently, there is a need to explore other cereal- and protein-based ingredients for compounding feeds in order to reduce the risk associated with high mycotoxin (e.g. aflatoxin) intake in poultry.
Collapse
Affiliation(s)
| | - Abdul-Dahiru El-Yuguda
- Department of Veterinary Microbiology, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Jasini A Musa
- Department of Veterinary Microbiology, University of Maiduguri, Maiduguri, Borno, Nigeria
| | | | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Yinka M Somorin
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun, Nigeria. .,Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria.
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| |
Collapse
|
18
|
Comprehensive Description of Fusarium graminearum Pigments and Related Compounds. Foods 2018; 7:foods7100165. [PMID: 30301164 PMCID: PMC6209861 DOI: 10.3390/foods7100165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022] Open
Abstract
Several studies have explored in depth the biochemistry and genetics of the pigments present in Fusarium graminearum, but there is a need to discuss their relationship with the mold's observable surface color pattern variation throughout its lifecycle. Furthermore, they require basic cataloguing, including a description of their major features known so far. Colors are a viable alternative to size measurement in growth studies. When grown on yeast extract agar (YEA) at 25 °C, F. graminearum initially exhibits a whitish mycelium, developing into a yellow-orange mold by the sixth day and then turning into wine-red. The colors are likely due to accumulation of the golden yellow polyketide aurofusarin and the red rubrofusarin, but the carotenoid neurosporaxanthin also possibly plays a major role in the yellow or orange coloration. Torulene might contribute to red tones, but it perhaps ends up being converted into neurosporaxanthin. Culmorin is also present, but it does not contribute to the color, though it was initially isolated in pigment studies. Additionally, there is the 5-deoxybostrycoidin-based melanin, but it mostly occurs in the teleomorph's perithecium. There is still a need to chemically quantify the pigments throughout the lifecycle, and analyze their relationships and how much each impacts F. graminearum's surface color.
Collapse
|
19
|
Gruber-Dorninger C, Jenkins T, Schatzmayr G. Multi-mycotoxin screening of feed and feed raw materials from Africa. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2292] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As animal feed is prone to infestation with mycotoxin-producing fungi, mycotoxin contamination of feed should be monitored. Here, we report a multi-mycotoxin survey of feed samples from Africa. We determined the concentrations of aflatoxins, fumonisins, deoxynivalenol, T-2 toxin, zearalenone and ochratoxin A in 1,045 samples of finished feed and feed raw materials (maize, maize silage, other cereals, etc.) from South Africa and 318 samples from Algeria, Tunisia, Morocco, Senegal, Côte d’Ivoire, Nigeria, Ghana, Namibia, Uganda, Kenya, Tanzania, Zambia and Madagascar. We compared the measured mycotoxin concentrations to regulatory limits or guidance values that are in effect in the European Union and analysed the co-occurrence of these mycotoxins. To determine the occurrence of other fungal secondary metabolites, a subset of the samples was analysed using a multi-analyte liquid chromatography tandem mass spectrometry-based method for the simultaneous detection of over 700 fungal metabolites. We found that 33.3% of maize samples and 54.4% of finished feed samples from Senegal, Côte d’Ivoire, Nigeria, Ghana, Namibia, Uganda, Kenya and Tanzania exceeded the European regulatory limit of 20 ng/g aflatoxins. The Fusarium mycotoxins zearalenone, fumonisins and deoxynivalenol were prevalent in all commodities from all countries, but concentrations were in most cases below European guidance values. Concentrations of deoxynivalenol and zearalenone were correlated. Several other Fusarium metabolites occurred frequently (e.g. moniliformin, beauvericin, aurofusarin) or in high concentrations (e.g. aurofusarin, fusaproliferin). Furthermore, high levels of diplodiatoxin were occasionally detected in samples from South Africa and the Alternaria metabolite tenuazonic acid was prevalent and reached high concentrations. In conclusion, aflatoxins frequently occurred in African feed samples in potentially unsafe concentrations. While Fusarium mycotoxins mostly occurred in concentrations below European guidance values, a correlation between deoxynivalenol and zearalenone concentrations suggests that toxicological interactions of these compounds deserve attention. Several less investigated fungal secondary metabolites occurred frequently or reached high concentrations.
Collapse
Affiliation(s)
| | - T. Jenkins
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - G. Schatzmayr
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| |
Collapse
|
20
|
Multi-Mycotoxin Occurrence in Dairy Cattle Feeds from the Gauteng Province of South Africa: A Pilot Study Using UHPLC-QTOF-MS/MS. Toxins (Basel) 2018; 10:toxins10070294. [PMID: 30013005 PMCID: PMC6071188 DOI: 10.3390/toxins10070294] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 11/17/2022] Open
Abstract
The indispensable nature of toxigenic fungi and mycotoxins in agricultural systems is of worldwide concern, hence the need for surveillance studies to preserve public health. Thirteen dairy farms were surveyed and 40 dairy feeds of varying nature collected and analyzed for mycotoxins. Estimated levels of aflatoxins (AFs), fumonisin B1 (FB1), ochratoxin A (OTA), citrinin (CIT), zearalenone (ZEN), α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), deoxynivalenol (DON), 3- and 15-acetyl-deoxynivalenol (ADONs), HT-2 toxin (HT-2), and beauvericin (BEA) were established using liquid chromatography-tandem mass spectrometry. Highest frequencies (40/40) were found for AFG2 (range: <LOQ—116.1 ppb), α-ZEL (range: 0.98–13.24 ppb), and β-ZEL (range: 0.73–4.71 ppb), followed by AFB2 at 37/40 (range: <LOQ—23.88 ppb), BEA at 36/40 (range: <LOQ—55.99 ppb), HT-2 at 35/40 (range: <LOQ—312.95 ppb), and FB1 at 34/40 (range: <LOQ—1389.62 ppb). Apart from samples exceeding regulatory limits for total AFs in dairy feeds due to the high amounts of AFG2 and AFB2, levels of other mycotoxins were regarded as safe for dairy production in South Africa. This is the first-time the natural occurrence of the cold climate HT-2 in South African feeds was documented. Persistent co-occurrence of multiple mycotoxins across samples, however, may elicit synergistic and/or additive effects in hosts, hence raising concerns about their impacts and how such interactions may affect the dairy livestock sector.
Collapse
|
21
|
Getachew A, Chala A, Hofgaard IS, Brurberg MB, Sulyok M, Tronsmo AM. Multimycotoxin and fungal analysis of maize grains from south and southwestern Ethiopia. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2017; 11:64-74. [DOI: 10.1080/19393210.2017.1408698] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alemayehu Getachew
- College of Agriculture, Hawassa University, Hawassa, Ethiopia
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Alemayehu Chala
- College of Agriculture, Hawassa University, Hawassa, Ethiopia
| | - Ingerd Skow Hofgaard
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Michael Sulyok
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Anne-Marte Tronsmo
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
22
|
Jarolim K, Wolters K, Woelflingseder L, Pahlke G, Beisl J, Puntscher H, Braun D, Sulyok M, Warth B, Marko D. The secondary Fusarium metabolite aurofusarin induces oxidative stress, cytotoxicity and genotoxicity in human colon cells. Toxicol Lett 2017; 284:170-183. [PMID: 29248571 DOI: 10.1016/j.toxlet.2017.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/22/2017] [Accepted: 12/11/2017] [Indexed: 02/01/2023]
Abstract
Aurofusarin (AURO), a dimeric naphthoquinone, is produced by Fusarium fungi. Although frequently found in food and feed, toxicological studies are limited. Hence, the in vitro toxicity of AURO was investigated in the colon adenocarcinoma cell line HT29 and the non-tumorigenic colon cells HCEC-1CT. Cytotoxic effects were found at concentrations ≥1 μM by evaluating mitochondrial activity (WST-1) and cellular proliferation (sulforhodamine B assay). 10 μM of AURO induced a decrease of cells in the S-phase, measured by flow cytometry. Confocal microscopy revealed AURO-mediated increase of intracellular p53 protein. In accordance, DNA-damage was seen in the comet assay (≥1 μM) together with enhanced levels of formamidopyrimidine-DNA-glycosylase (fpg)-sensitive sites, indicative for oxidative stress. An increase of intracellular reactive oxygen species was observed in the dichlorofluorescein (DCF) assay (≥5 μM). The GSSG/GSH ratio was elevated, but no impact on redox-sensitive Nrf2-dependent genes (Nrf2, γ-GCL, NQO1) was found at the gene expression level. However, induction of cytochrome P450 monooxygenase (CYP) 1A1 was measured at the gene expression and protein level. In conclusion, these in vitro data suggest that, when co-occurring, AURO might be considered as a potential contributor to the overall toxicity of respective Fusarium mycotoxin mixtures.
Collapse
Affiliation(s)
- Katharina Jarolim
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090 Vienna, Austria
| | - Konstantin Wolters
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090 Vienna, Austria
| | - Lydia Woelflingseder
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090 Vienna, Austria
| | - Gudrun Pahlke
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090 Vienna, Austria
| | - Julia Beisl
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090 Vienna, Austria
| | - Hannes Puntscher
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090 Vienna, Austria
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090 Vienna, Austria
| | - Michael Sulyok
- University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, 3430 Tulln, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090 Vienna, Austria
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090 Vienna, Austria.
| |
Collapse
|
23
|
Chilaka CA, De Boevre M, Atanda OO, De Saeger S. The Status of Fusarium Mycotoxins in Sub-Saharan Africa: A Review of Emerging Trends and Post-Harvest Mitigation Strategies towards Food Control. Toxins (Basel) 2017; 9:E19. [PMID: 28067768 PMCID: PMC5308251 DOI: 10.3390/toxins9010019] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 02/01/2023] Open
Abstract
Fusarium fungi are common plant pathogens causing several plant diseases. The presence of these molds in plants exposes crops to toxic secondary metabolites called Fusarium mycotoxins. The most studied Fusarium mycotoxins include fumonisins, zearalenone, and trichothecenes. Studies have highlighted the economic impact of mycotoxins produced by Fusarium. These arrays of toxins have been implicated as the causal agents of wide varieties of toxic health effects in humans and animals ranging from acute to chronic. Global surveillance of Fusarium mycotoxins has recorded significant progress in its control; however, little attention has been paid to Fusarium mycotoxins in sub-Saharan Africa, thus translating to limited occurrence data. In addition, legislative regulation is virtually non-existent. The emergence of modified Fusarium mycotoxins, which may contribute to additional toxic effects, worsens an already precarious situation. This review highlights the status of Fusarium mycotoxins in sub-Saharan Africa, the possible food processing mitigation strategies, as well as future perspectives.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
- Department of Food Science and Technology, College of Applied Food Science and Tourism, Michael Okpara University of Agriculture, Umuahia-Ikot Ekpene Road, Umudike, Umuahia PMB 7267, Abia State, Nigeria.
| | - Marthe De Boevre
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Olusegun Oladimeji Atanda
- Department of Biological Sciences, McPherson University, KM 96 Lagos-Ibadan Expressway, 110117 Seriki Sotayo, Ogun State, Nigeria.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| |
Collapse
|
24
|
Abdallah MF, Krska R, Sulyok M. Mycotoxin Contamination in Sugarcane Grass and Juice: First Report on Detection of Multiple Mycotoxins and Exposure Assessment for Aflatoxins B₁ and G₁ in Humans. Toxins (Basel) 2016; 8:E343. [PMID: 27869706 PMCID: PMC5127139 DOI: 10.3390/toxins8110343] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 11/23/2022] Open
Abstract
This study was conducted to investigate the natural co-occurrence of multiple toxic fungal and bacterial metabolites in sugarcane grass and juice intended for human consumption in Upper Egypt. Quantification of the target analytes has been done using the "dilute and shoot" approach followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total number of 29 and 33 different metabolites were detected in 21 sugarcane grass and 40 juice samples, respectively, with a trend of concentrations being higher in grass than in juice. Among the regulated mycotoxins, only aflatoxin B₁ (AFB₁) and aflatoxin G₁ (AFG₁) were detected. The prevalence of AFB₁ was in 48% of grass samples and in 58% of juice with a maximum concentration of 30.6 μg/kg and 2.10 μg/kg, respectively. AFG₁ was detected in 10% of grass samples (7.76 μg/kg) and 18% of juice samples (34 μg/kg). Dietary exposure was assessed using a juice frequency questionnaire of adult inhabitants in Assiut City. The assessment revealed different levels of exposure to AFB₁ between males and females in winter and summer seasons. The estimated seasonal exposure ranged from 0.20 to 0.40 ng/kg b.w./day in winter and from 0.38 to 0.90 ng/kg b.w./day in summer.
Collapse
Affiliation(s)
- Mohamed F Abdallah
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt.
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str 20, Tulln A-3430, Austria.
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str 20, Tulln A-3430, Austria.
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str 20, Tulln A-3430, Austria.
| |
Collapse
|
25
|
Escrivá L, Manyes L, Font G, Berrada H. Analysis of trichothecenes in laboratory rat feed by gas chromatography-tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 33:329-38. [PMID: 26616914 DOI: 10.1080/19440049.2015.1124458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A method for the determination of seven trichothecenes, neosolaniol (NEO), diacetoxyscirpenol (DAS), deoxynivalenol (DON), nivalenol (NIV), fusarenon-X (FUS-X), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON), in laboratory rat feed by GC-MS/MS was developed. Sample extraction and purification was performed by an acidified mixture of acetonitrile/water (80-20% v/v). Limits of quantitation (LOQs) were between 1 and 10 μg kg(-1) for all studied trichothecenes. Eight concentration levels between the LOQ and 100 × LOQ were used for the calibration curves. Matrix-matched calibration was used for quantitation purposes to compensate the detector signal enhancement obtained for all the analytes. The method accuracy was evaluated by recovery assays at three concentration levels, 25, 50 and 100 μg kg(-1) (n = 9). Recoveries ranged from 62% to 97% and precision, expressed as intra- and inter-day relative standard deviations, was evaluated for all compounds. The validated method was successfully applied to the analysis of 35 laboratory rat feed samples showing mycotoxin contamination in 66% of the samples. DON was the most prevalent trichothecene followed by 15-ADON, NIV and 3-ADON. The maximum DON concentration reached in real samples was 2156 ± 4.3 μg kg(-1), while NEO, DAS and FUS-X were not detected in any sample. Multi-contamination by at least two mycotoxins was observed in 17% of the analysed feed samples.
Collapse
Affiliation(s)
- Laura Escrivá
- a Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy , University of Valencia , Burjassot , Spain
| | - Lara Manyes
- a Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy , University of Valencia , Burjassot , Spain
| | - Guillermina Font
- a Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy , University of Valencia , Burjassot , Spain
| | - Houda Berrada
- a Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy , University of Valencia , Burjassot , Spain
| |
Collapse
|
26
|
Rofiat AS, Fanelli F, Atanda O, Sulyok M, Cozzi G, Bavaro S, Krska R, Logrieco AF, Ezekiel CN. Fungal and bacterial metabolites associated with natural contamination of locally processed rice (Oryza sativaL.) in Nigeria. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:950-9. [DOI: 10.1080/19440049.2015.1027880] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Coradi PC, Maier DE, Channaiah LH, Campabadal C. Effects of the Processing on the Distribution of Aflatoxin and Fumonisin Levels in Corn Fractions and Feeds. J FOOD PROCESS ENG 2015. [DOI: 10.1111/jfpe.12212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paulo C. Coradi
- Campus of Chapadão do Sul; Federal University of Mato Grosso of Sul; Fazenda Campo Bom MS 306, Km 105, Zona Rural, Box 112 79560-000 Chapadão do Sul Mato Grosso do Sul Brazil
| | - Dirk E. Maier
- Department of Grain Science and Industry; Kansas State University; Manhattan KS
| | | | - Carlos Campabadal
- Department of Grain Science and Industry; Kansas State University; Manhattan KS
| |
Collapse
|
28
|
Ezekiel C, Atehnkeng J, Odebode A, Bandyopadhyay R. Distribution of aflatoxigenic Aspergillus section Flavi in commercial poultry feed in Nigeria. Int J Food Microbiol 2014; 189:18-25. [DOI: 10.1016/j.ijfoodmicro.2014.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 07/05/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
|
29
|
Fungal and bacterial metabolites of stored maize (Zea mays, L.) from five agro-ecological zones of Nigeria. Mycotoxin Res 2014; 30:89-102. [PMID: 24643458 DOI: 10.1007/s12550-014-0194-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/27/2022]
Abstract
Seventy composite samples of maize grains stored in five agro-ecological zones (AEZs) of Nigeria where maize is predominantly produced were evaluated for the presence of microbial metabolites with the LC-MS/MS technique. The possible relationships between the storage structures and levels of mycotoxin contamination were also evaluated. Sixty-two fungal and four bacterial metabolites were extracted from the grains, 54 of which have not been documented for maize in Nigeria. Aflatoxin B1 and fumonisin B1 were quantified in 67.1 and 92.9% of the grains, while 64.1 and 57.1% exceeded the European Union Commission maximum acceptable limit (MAL) for aflatoxin B1 and fumonisins, respectively. The concentration of deoxynivalenol was, however, below the MAL with occurrence levels of 100 and 10% for its masked metabolite, deoxynivalenol glucoside. The bacterial metabolites had low concentrations and were not a source of concern. The storage structures significantly correlated positively or negatively (p < 0.01 and p < 0.05), respectively with the levels of grain contamination. Consumption of maize grains, a staple Nigerian diet, may therefore expose the population to mycotoxin contamination. There is need for an immediate action plan for mycotoxin mitigation in Nigeria, especially in the Derived Savannah zone, in view of the economic and public health importance of the toxins.
Collapse
|
30
|
Makun HA, Adeniran A, Mailafiya SC, Ayanda IS, Mudashiru AT, Ojukwu UJ, Jagaba AS, Usman Z, Salihu DA. Natural occurrence of ochratoxin A in some marketed Nigerian foods. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.09.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins (Basel) 2013; 5:504-23. [PMID: 23529186 PMCID: PMC3705275 DOI: 10.3390/toxins5030504] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/07/2013] [Accepted: 02/22/2013] [Indexed: 11/30/2022] Open
Abstract
The development of liquid chromatography-mass spectrometry (LC-MS)/mass spectrometry (MS) methods for the simultaneous detection and quantification of a broad spectrum of mycotoxins has facilitated the screening of a larger number of samples for contamination with a wide array of less well-known “emerging” mycotoxins and other metabolites. In this study, 83 samples of feed and feed raw materials were analysed. All of them were found to contain seven to 69 metabolites. The total number of detected metabolites amounts to 139. Fusarium mycotoxins were most common, but a number of Alternaria toxins also occurred very often. Furthermore, two so-called masked mycotoxins (i.e., mycotoxin conjugates), namely deoxynivalenol-3-glucoside (75% positives) and zearalenone-4-sulfate (49% positives), were frequently detected. Although the observed median concentrations of the individual analytes were generally in the low μg/kg range, evaluating the toxicological potential of a given sample is difficult. Toxicity data on less well-known mycotoxins and other detected metabolites are notoriously scarce, as an overview on the available information on the most commonly detected metabolites shows. Besides, the possible synergistic effects of co-occurring substances have to be considered.
Collapse
|
32
|
Ezekiel C, Sulyok M, Warth B, Odebode A, Krska R. Natural occurrence of mycotoxins in peanut cake from Nigeria. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Warth B, Parich A, Atehnkeng J, Bandyopadhyay R, Schuhmacher R, Sulyok M, Krska R. Quantitation of mycotoxins in food and feed from Burkina Faso and Mozambique using a modern LC-MS/MS multitoxin method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9352-9363. [PMID: 22835072 DOI: 10.1021/jf302003n] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study an LC-MS/MS multitoxin method covering a total of 247 fungal and bacterial metabolites was applied to the analysis of different foods and feedstuffs from Burkina Faso and Mozambique. Overall, 63 metabolites were determined in 122 samples of mainly maize and groundnuts and a few samples of sorghum, millet, rice, wheat, soy, dried fruits, other processed foods and animal feeds. Aflatoxin B(1) was observed more frequently in maize (Burkina Faso, 50% incidence, median = 23.6 μg/kg; Mozambique, 46% incidence, median = 69.9 μg/kg) than in groundnuts (Burkina Faso, 22% incidence, median = 10.5 μg/kg; Mozambique, 14% incidence, median = 3.4 μg/kg). Fumonisin B(1) concentrations in maize were higher in Mozambique (92% incidence, median = 869 μg/kg) than in Burkina Faso (81% incidence, median = 269 μg/kg). In addition, ochratoxin A, zearalenone, deoxynivalenol, nivalenol, and other less reported mycotoxins such as citrinin, alternariol, cyclopiazonic acid, sterigmatocystin, moniliformin, beauvericin, and enniatins were detected. Up to 28 toxic fungal metabolites were quantitated in a single sample, emphasizing the great variety of mycotoxin coexposure. Most mycotoxins have not been reported before in either country.
Collapse
Affiliation(s)
- Benedikt Warth
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | | | | | | | | | | | | |
Collapse
|
34
|
Multi-microbial metabolites in fonio millet (acha) and sesame seeds in Plateau State, Nigeria. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1755-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|