1
|
Giotopoulou I, Fotiadou R, Stamatis H, Barkoula NM. Development of Low-Density Polyethylene Films Coated with Phenolic Substances for Prolonged Bioactivity. Polymers (Basel) 2023; 15:4580. [PMID: 38232018 PMCID: PMC10707956 DOI: 10.3390/polym15234580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
The current study proposes an efficient coating methodology for the development of low-density polyethylene (LDPE) films with prolonged bioactivity for food packaging applications. Three natural phenolic-based substances were incorporated at optimized concentrations in methyl-cellulose-based solutions and used as coatings on LDPE films. The amount of surfactant/emulsifier was optimized to control the entrapment of the bioactive substances, minimizing the loss of the substances during processing, and offering prolonged bioactivity. As a result, the growth of Escherichia coli was substantially inhibited after interaction with the coated films, while coated films presented excellent antioxidant activities and maintained their mechanical performance after coating. Considerable bioactivity was observed after up to 7 days of storage in sealed bags in the case of carvacrol- and thymol-coated films. Interestingly, films coated with olive-leaf extract maintained a high level of antimicrobial and antioxidant properties, at least for 40 days of storage.
Collapse
Affiliation(s)
- Iro Giotopoulou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Renia Fotiadou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (H.S.)
| | - Haralambos Stamatis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (H.S.)
| | | |
Collapse
|
2
|
Taylor R, Sapozhnikova Y, Demir B, Qiao M. Investigating migration potential of a new rechargeable antimicrobial coating for food processing equipment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:688-697. [PMID: 37098250 DOI: 10.1080/19440049.2023.2203777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Antimicrobial coatings are designed to inhibit the growth of pathogens and have been used to reduce foodborne illness bacteria on food processing equipment. Novel N-halamine based antimicrobial coatings are highly advantageous due to their unique properties and low cost, and are being investigated for applications in food safety, health care, water and air disinfection, etc. In this study, we evaluated the chemical safety of a novel N-halamine antimicrobial polymer coating (Halofilm) for use on food processing equipment. Migration tests were performed on stainless steel tiles prepared with four different treatment groups: negative control, positive control, Halofilm coating without chlorination, and Halofilm coating with chlorination. An LC-MS/MS method was developed and validated for four formulation components: polyethylenimine (PEI), Trizma® base, hydantoin acrylamide (HA) and dopamine methacrylamide (DMA), followed by stability and recovery tests. Migration tests were conducted at 40 °C with three food simulants (10, 50 and 95% ethanol/water) to mimic various food properties, and aliquots of migration extracts were analyzed at 2, 8, 72, 240 and 720 h. In general, measured concentration levels were consistent among simulant types for the four tested chemicals. Chlorinated tiles had non-detects for three analytes (PEI, HA and DMA), and less than 0.05 mg/kg of HA migration over 30 days. A chlorination step could possibly change the measured mass (m/z) hence leading to non-detects in targeted LC-MS/MS. In non-chlorinated tiles, all four compounds were detected during the migration test. This suggests that addition of the chlorination step may have a stabilizing effect on the polymer. Additionally, full scan high resolution mass spectrometry (HRMS) analysis was employed to screen for migration of other extractable and leachable (E&L) chemicals, which led to the identification of eight common E&L chemicals. To our knowledge, this is the first report evaluating chemical migration from an N-halamine antimicrobial polymer coating product.
Collapse
Affiliation(s)
- Raegyn Taylor
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| | | | | |
Collapse
|
3
|
Zhang X, Yang C, Yang K. Novel Antibacterial Metals as Food Contact Materials: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3029. [PMID: 37109867 PMCID: PMC10145333 DOI: 10.3390/ma16083029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Food contamination caused by microorganisms is a significant issue in the food field that not only affects the shelf life of food, but also threatens human health, causing huge economic losses. Considering that the materials in direct or indirect contact with food are important carriers and vectors of microorganisms, the development of antibacterial food contact materials is an important coping strategy. However, different antibacterial agents, manufacturing methods, and material characteristics have brought great challenges to the antibacterial effectiveness, durability, and component migration associated with the use security of materials. Therefore, this review focused on the most widely used metal-type food contact materials and comprehensively presents the research progress regarding antibacterial food contact materials, hoping to provide references for exploring novel antibacterial food contact materials.
Collapse
|
4
|
Orani AM, Vassileva E, Thomas OP. Application of SS-CS-HR-AAS measurements for the detection of Ag nanoparticles in marine invertebrates. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:865-871. [PMID: 35908222 DOI: 10.1007/s00128-022-03573-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The present study describes the development of a fit-for-purpose analytical procedure for the detection of Ag NPs in different marine organisms by Solid Sampling Continuous Source High Resolution Atomic Absorption Spectrometry (SS-CS-HR-AAS). The detection is based on the observation of the Ag absorption peak and its atomization delay tad which is different for ionic Ag and Ag NPs. The temperature program was optimized in order to achieve the maximum difference between the t ad (Δtad ). The method was first developed using biota CRMs spiked with different Ag NPs standard solutions or Ag+ , at the same concentration. Then, laboratory exposure experiments were performed on mussels and marine sponges. The results showed that the developed methodology is suitable for the detection of Ag NPs for both groups of organisms, showing Δtad up to 3.1 s. The developed method is therefore a promising tool to assess the presence of AgNPs in marine invertebrates.
Collapse
Affiliation(s)
- Anna Maria Orani
- International Atomic Energy Agency, Marine Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Principality of Monaco
| | - Emilia Vassileva
- International Atomic Energy Agency, Marine Environment Laboratories, 4 Quai Antoine 1er, 98000, Monaco, Principality of Monaco.
| | - Olivier P Thomas
- National University of Ireland, | NUI Galway · School of Chemistry, University Road, H91 TK33, Galway, Ireland
| |
Collapse
|
5
|
Duncan TV, Bajaj A, Gray PJ. Surface defects and particle size determine transport of CdSe quantum dots out of plastics and into the environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129687. [PMID: 36104913 DOI: 10.1016/j.jhazmat.2022.129687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 05/26/2023]
Abstract
Polymers incorporating quantum dots (QDs) have attracted interest as components of next-generation consumer products, but there is uncertainty about how these potentially hazardous materials may impact human health and the environment. We investigated how the transport (migration) of QDs out of polymers and into the environment is linked to their size and surface characteristics. Cadmium selenide (CdSe) QDs with diameters ranging from 2.15 to 4.63 nm were incorporated into low-density polyethylene (LDPE). Photoluminescence was used as an indicator of QD surface defect density. Normalized migration of QDs into 3% acetic acid over 15 days ranged from 13.1 ± 0.6-452.5 ± 31.9 ng per cm2 of polymer surface area. Migrated QD mass was negatively correlated to QD diameter and was also higher when QDs had photoluminescence consistent with larger surface defect densities. The results imply that migration is driven by oxidative degradation of QDs originating at surface defect sites and transport of oxidation products along concentration gradients. A semi-empirical framework was developed to model the migration data. The model supports this mechanism and suggests that QD surface reactivity also drives the relationship between QD size and migration, with specific surface area playing a less important role.
Collapse
Affiliation(s)
- Timothy V Duncan
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Bedford Park, IL 60501, USA.
| | - Akhil Bajaj
- Illinois Institute of Technology, Bedford Park, IL 60501, USA
| | - Patrick J Gray
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Bedford Park, IL 60501, USA
| |
Collapse
|
6
|
Duncan TV, Bajaj A, Sharma A, Gray PJ, Weiner RG, Pillai KV. Sulfides mediate the migration of nanoparticle mass out of nanocomposite plastics and into aqueous environments. NANOIMPACT 2022; 28:100426. [PMID: 36096361 DOI: 10.1016/j.impact.2022.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 05/26/2023]
Abstract
We show that inorganic sulfides strongly influence transfer (migration) of nanoparticle mass out of polymer nanocomposites (PNCs) and into aqueous environments. We first manufactured two families of PNCs: one incorporating silver nanoparticles (AgNPs) and one incorporating CdSe quantum dots (QDs). Then, we assessed migration out of these PNCs and into aqueous media containing Na2S at concentrations ranging from 0 to 10-4 M. Results show that Na2S strongly suppressed migration of Ag from AgNP-based PNCs: the migration into water spiked with 10-6 M Na2S was 79% less than migration into water without Na2S, and no migration was detected (LOD ≈ 0.01 ng/cm2) in water spiked with Na2S at 10-5 M or 10-4 M. With CdSe QD-based PNCs, Na2S suppressed Cd migration but enhanced Se migration, resulting in only a small net effect on the total QD migration but a large shift of the leachate composition (from favoring Cd by an average of 5.8 to 1 in pure water to favoring Se 9.4 to 1 when Na2S was present at 10-4 M). These results show that common inorganic substances like sulfides may play a strong role in determining the environmental fate of polymer-dispersed nanoparticles and imply that migration tests conducted in purified water may not always accurately reflect migration into real environments.
Collapse
Affiliation(s)
- Timothy V Duncan
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Bedford Park, IL 60501, USA.
| | - Akhil Bajaj
- Department of Food Science and Nutrition, Illinois Institute of Technology, Bedford Park, IL 60501, USA
| | - Ashutosh Sharma
- Department of Food Science and Nutrition, Illinois Institute of Technology, Bedford Park, IL 60501, USA
| | - Patrick J Gray
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Bedford Park, IL 60501, USA
| | - Rebecca G Weiner
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Bedford Park, IL 60501, USA
| | - Karthik V Pillai
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Bedford Park, IL 60501, USA
| |
Collapse
|
7
|
Suvarna V, Nair A, Mallya R, Khan T, Omri A. Antimicrobial Nanomaterials for Food Packaging. Antibiotics (Basel) 2022; 11:729. [PMID: 35740136 PMCID: PMC9219644 DOI: 10.3390/antibiotics11060729] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Food packaging plays a key role in offering safe and quality food products to consumers by providing protection and extending shelf life. Food packaging is a multifaceted field based on food science and engineering, microbiology, and chemistry, all of which have contributed significantly to maintaining physicochemical attributes such as color, flavor, moisture content, and texture of foods and their raw materials, in addition to ensuring freedom from oxidation and microbial deterioration. Antimicrobial food packaging systems, in addition to their function as conventional food packaging, are designed to arrest microbial growth on food surfaces, thereby enhancing food stability and quality. Nanomaterials with unique physiochemical and antibacterial properties are widely explored in food packaging as preservatives and antimicrobials, to extend the shelf life of packed food products. Various nanomaterials that are used in food packaging include nanocomposites composing nanoparticles such as silver, copper, gold, titanium dioxide, magnesium oxide, zinc oxide, mesoporous silica and graphene-based inorganic nanoparticles; gelatin; alginate; cellulose; chitosan-based polymeric nanoparticles; lipid nanoparticles; nanoemulsion; nanoliposomes; nanosponges; and nanofibers. Antimicrobial nanomaterial-based packaging systems are fabricated to exhibit greater efficiency against microbial contaminants. Recently, smart food packaging systems indicating the presence of spoilage and pathogenic microorganisms have been investigated by various research groups. The present review summarizes recent updates on various nanomaterials used in the field of food packaging technology, with potential applications as antimicrobial, antioxidant equipped with technology conferring smart functions and mechanisms in food packaging.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Arya Nair
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; (A.N.); (R.M.)
| | - Rashmi Mallya
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; (A.N.); (R.M.)
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
8
|
Mahmud J, Sarmast E, Shankar S, Lacroix M. Advantages of nanotechnology developments in active food packaging. Food Res Int 2022; 154:111023. [DOI: 10.1016/j.foodres.2022.111023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023]
|
9
|
Fu Y, Dudley EG. Antimicrobial-coated films as food packaging: A review. Compr Rev Food Sci Food Saf 2021; 20:3404-3437. [PMID: 34056844 DOI: 10.1111/1541-4337.12769] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
Antimicrobial food packaging involves packaging the foods with antimicrobials to protect them from harmful microorganisms. In general, antimicrobials can be integrated with packaging materials via direct incorporation of antimicrobial agents into polymers or application of antimicrobial coating onto polymer surfaces. The former option is generally achieved through thermal film-making technology such as compression molding or film extrusion, which is primarily suitable for heat-stable antimicrobials. As a nonthermal technology, surface coating is more promising compared to molding or extrusion for manufacturing food packaging containing heat-sensitive antimicrobials. In addition, it also has advantages over direct incorporation to preserve the packaging materials' bulk properties (e.g., mechanical and physical properties) and minimize the amount of antimicrobials to reach sufficient efficacy. Herein, antimicrobial food packaging films achieved through surface coating is explored and discussed. The two components (i.e., film substrate and antimicrobials) consisting of the antimicrobial-coated films are reviewed as plastic/biopolymer films; and synthetic/naturally occurring antimicrobials. Furthermore, special emphasis is given to different coating technologies to deposit antimicrobials onto film substrate. Laboratory coating techniques (e.g., knife coating, bar coating, and spray coating) commonly applied in academic research are introduced briefly, and scalable coating methods (i.e., electrospinning/spraying, gravure roll coating, flexography coating) that have the potential to bring laboratory-developed antimicrobial-coated films to an industrial level are explained in detail. The migration profile, advantages/drawbacks of antimicrobial-coated films for food applications, and quantitative analyses of the reviewed antimicrobial-coated films from different aspects are also covered in this review. A conclusion is made with a discussion of the challenges that remain in bringing the production of antimicrobial-coated films to an industrial level.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
10
|
Abstract
Packaging containing nanoparticles (NPs) can increase the shelf life of products, but the presence of NPs may hazards human life. In this regard, there are reports regarding the side effect and cytotoxicity of nanoparticles. The main aim of this research was to study the migration of silver and copper nanoparticles from the packaging to the food matrix as well as the assessment techniques. The diffusion and migration of nanoparticles can be analyzed by analytical techniques including atomic absorption, inductively coupled plasma mass spectrometry, inductively coupled plasma atomic emission, and inductively coupled plasma optical emission spectroscopy, as well as X-ray diffraction, spectroscopy, migration, and titration. Inductively coupled plasma-based techniques demonstrated the best results. Reports indicated that studies on the migration of Ag/Cu nanoparticles do not agree with each other, but almost all studies agree that the migration of these nanoparticles is higher in acidic environments. There are widespread ambiguities about the mechanism of nanoparticle toxicity, so understanding these nanoparticles and their toxic effects are essential. Nanomaterials that enter the body in a variety of ways can be distributed throughout the body and damage human cells by altering mitochondrial function, producing reactive oxygen, and increasing membrane permeability, leading to toxic effects and chronic disease. Therefore, more research needs to be done on the development of food packaging coatings with consideration given to the main parameters affecting nanoparticles migration.
Collapse
|
11
|
Affiliation(s)
- Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Zhengguo Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
12
|
Emamhadi MA, Sarafraz M, Akbari M, Thai VN, Fakhri Y, Linh NTT, Mousavi Khaneghah A. Nanomaterials for food packaging applications: A systematic review. Food Chem Toxicol 2020; 146:111825. [PMID: 33096197 DOI: 10.1016/j.fct.2020.111825] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022]
Abstract
The application of nanotechnology in food packaging is widely considered during the last two decades. In this regard, numerous studies have been conducted regarding applying nanomaterials such as zinc oxide, clay, silver, carbon nanotube, titanium dioxide, and copper, and copper oxide in food packaging which were summarized in the current study. The employing of nano food packaging increases the physicochemical quality of food (color, flavor, moisture content, weight, bioavailability, and texture) and reduces the microbial load by cell-membrane function, Trojan-horse, and reactive oxygen mechanisms while they improve the barrier/mechanical properties of food packaging. Although nano food packaging has many advantages for public health, the associated toxicity due to migration, especially in acidic conditions, is considerable. Further studies regarding the advantages and disadvantages of this technique are recommended.
Collapse
Affiliation(s)
- Mohammad Ali Emamhadi
- Department of Forensic Medicine and Toxicology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansour Sarafraz
- School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Akbari
- Department of Eye, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Van Nam Thai
- Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nguyen Thi Thuy Linh
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Vietnam.
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Setyawati MI, Zhao Z, Ng KW. Transformation of Nanomaterials and Its Implications in Gut Nanotoxicology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001246. [PMID: 32495486 DOI: 10.1002/smll.202001246] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Ingestion of engineered nanomaterials (ENMs) is inevitable due to their widespread utilization in the agrifood industry. Safety evaluation has become pivotal to identify the consequences on human health of exposure to these ingested ENMs. Much of the current understanding of nanotoxicology in the gastrointestinal tract (GIT) is derived from studies utilizing pristine ENMs. In reality, agrifood ENMs interact with their microenvironment, and undergo multiple physicochemical transformations, such as aggregation/agglomeration, dissolution, speciation change, and surface characteristics alteration, across their life cycle from synthesis to consumption. This work sieves out the implications of ENM transformations on their behavior, stability, and reactivity in food and product matrices and through the GIT, in relation to measured toxicological profiles. In particular, a strong emphasis is given to understand the mechanisms through which these transformations can affect ENM induced gut nanotoxicity.
Collapse
Affiliation(s)
- Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
- Skin Research Institute of Singapore, Biomedical Science Institutes, Immunos, 8A Biomedical Grove, Singapore, 138648, Singapore
| |
Collapse
|
14
|
Braun S, Ilberg V, Blum U, Langowski HC. Release of silver from silver doped PET bottles. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Mania S, Cieślik M, Konzorski M, Święcikowski P, Nelson A, Banach A, Tylingo R. The Synergistic Microbiological Effects of Industrial Produced Packaging Polyethylene Films Incorporated with Zinc Nanoparticles. Polymers (Basel) 2020; 12:polym12051198. [PMID: 32466089 PMCID: PMC7284736 DOI: 10.3390/polym12051198] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 11/22/2022] Open
Abstract
Zinc compounds in polyolefin films regulate the transmission of UV-VIS radiation, affect mechanical properties and antimicrobial activity. According to hypothesis, the use of zinc- containing masterbatches in polyethylene films (PE) with different chemical nature—hydrophilic zinc oxide (ZO) and hydrophobic zinc stearate (ZS)—can cause a synergistic effect, especially due to their antimicrobial properties. PE films obtained on an industrial scale containing zinc oxide and zinc stearate masterbatches were evaluated for antimicrobial activity against E. coli and S. aureus strains. The morphology of the samples (SEM), composition (EDX), UV barrier and transparency, mechanical properties and global migration level were also determined. SEM micrographs confirmed the good dispersion of zinc additives in the PE matrix. The use of both masterbatches in one material caused a synergistic effect of antimicrobial activity against both bacterial strains. The ZO masterbatch reduced the transparency of films, increased their UV-barrier ability and improved tensile strength, while the ZS masterbatch did not significantly change the tested parameters. The global migration limit was not exceeded for any of the samples. The use of ZO and ZS masterbatch mixtures enables the design of packaging with high microbiological protection with a controlled transmission for UV and VIS radiation.
Collapse
Affiliation(s)
- Szymon Mania
- Department of Chemistry, Technology, and Biotechnology of Food, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdansk, Poland; (A.B.); (R.T.)
- Correspondence: ; Tel.: +48-58-347-28-56
| | - Mateusz Cieślik
- Department of Electrochemistry, Corrosion and Material Engineering, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdansk, Poland;
| | - Marcin Konzorski
- NAN company Andrzej Nelson Małgorzata Nelson Sp. J., 35D Zajączkowo Str., 83-111 Zajączkowo, Poland; (M.K.); (P.Ś.); (A.N.)
| | - Paweł Święcikowski
- NAN company Andrzej Nelson Małgorzata Nelson Sp. J., 35D Zajączkowo Str., 83-111 Zajączkowo, Poland; (M.K.); (P.Ś.); (A.N.)
| | - Andrzej Nelson
- NAN company Andrzej Nelson Małgorzata Nelson Sp. J., 35D Zajączkowo Str., 83-111 Zajączkowo, Poland; (M.K.); (P.Ś.); (A.N.)
| | - Adrianna Banach
- Department of Chemistry, Technology, and Biotechnology of Food, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdansk, Poland; (A.B.); (R.T.)
| | - Robert Tylingo
- Department of Chemistry, Technology, and Biotechnology of Food, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdansk, Poland; (A.B.); (R.T.)
| |
Collapse
|
16
|
Kehinde BA, Sharma P, Kaur S. Recent nano-, micro- and macrotechnological applications of ultrasonication in food-based systems. Crit Rev Food Sci Nutr 2020; 61:599-621. [PMID: 32208850 DOI: 10.1080/10408398.2020.1740646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is a neoteric and rising demand for nutritional and functional foods which behooves food processors to adopt processing techniques with optimal conservation of bioactive components in foods and with minimal pernicious impacts on the environment. Ultrasonication, a mechanochemical technique has proven to be an efficacious panacea to these concerns. In this review, an analytic exploration of recent researches and designs regarding ultrasound methodology and equipment on diverse food systems, technological scales, procedural parameters and outcomes of such experimentations optimally scrutinized. The relative effects of ultrasonication on food formulations, components and attributes such as nanoemulsions, nanocapsules, proteins, micronutrients, sensory and mechanical characteristics are evaluatively delineated. In food systems where ultrasonication was employed, it was found to have a remarkable effect on one or more quality parameters. This review is a supplementation to the pedagogical awareness to scholars on the suitability of ultrasonication for research procedures, and a call to industrial food brands on the adoption of this technique for the development of foods with optimally sustained nutrient profiles.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
17
|
SIMBINE EO, RODRIGUES LDC, LAPA-GUIMARÃES J, KAMIMURA ES, CORASSIN CH, OLIVEIRA CAFD. Application of silver nanoparticles in food packages: a review. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.36318] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Morais LDO, Macedo EV, Granjeiro JM, Delgado IF. Critical evaluation of migration studies of silver nanoparticles present in food packaging: a systematic review. Crit Rev Food Sci Nutr 2019; 60:3083-3102. [DOI: 10.1080/10408398.2019.1676699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Luciene de Oliveira Morais
- Post-Graduation Program in Health Surveillance, National Institute of Quality Control in Health, Rio de Janeiro, Brazil
| | | | - José Mauro Granjeiro
- Bioengineering Laboratory, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
- Materials Department, School of Dentistry, Federal Fluminense University, Niteroi, Brazil
| | - Isabella Fernandes Delgado
- Vice Presidency of Education, Information and Communication, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Enescu D, Cerqueira MA, Fucinos P, Pastrana LM. Recent advances and challenges on applications of nanotechnology in food packaging. A literature review. Food Chem Toxicol 2019; 134:110814. [PMID: 31520669 DOI: 10.1016/j.fct.2019.110814] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/24/2022]
Abstract
Nanotechnology applied to food and beverage packaging has created enormous interest in recent years, but in the same time there are many controversial issues surrounding nanotechnology and food. The benefits of engineered nanoparticles (ENPs) in food-contact applications are accompanied by safety concerns due to gaps in understanding of their possible toxicology. In case of incorporation in food contact polymers, the first step to consumer exposure is the transfer of ENPs from the polymer to the food. Hence, to improve understanding of risk and benefit, the key questions are whether nanoparticles can be released from food contact polymers and under which conditions. This review has two main goals. Firstly, it will presents the current advancements in the application of ENPs in food and beverage packaging sector to grant active and intelligent properties. A particular focus will be placed on current demands in terms of risk assessment strategies associated with the use ENPs in food contact materials (FCMs), i.e. up-to-date migration/cytotoxicity studies of ENPs which are partly contradictory. Food matrix effects are often ignored, and may have a pronounced impact on the behaviour of ENPs in the gastrointestinal tract (GIT). A standardized food model (SFM) for evaluating the toxicity and fate of ingested ENPs was recently proposed and herein discussed with the aims to offer an overview to the reader. It is therefore clear that further systematic research is needed, which must account for interactions and transformations of ENMs in foods (food matrix effect) and in the gastrointestinal tract (GIT) that are likely to determine nano-biointeractions. Secondly, the review provides an extensive analysis of present market dynamics on ENPs in food/beverage packaging moving beyond concept to current industrial applications.
Collapse
Affiliation(s)
- Daniela Enescu
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| | - Pablo Fucinos
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory (INL), Department Life Sciences, Research Unit: Nano4Food/Food Processing, Av. Mestre Jose Veiga s/n, 4715-330, Braga, Portugal
| |
Collapse
|
20
|
Addo Ntim S, Goodwin DG, Sung L, Thomas TA, Noonan GO. Long-term wear effects on nanosilver release from commercially available food contact materials. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1757-1768. [DOI: 10.1080/19440049.2019.1654138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Susana Addo Ntim
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | - David G. Goodwin
- Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Lipiin Sung
- Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Treye A. Thomas
- Office of Hazard Identification and Reduction, US Consumer Product Safety Commission, Bethesda, MD, USA
| | - Gregory O. Noonan
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
21
|
Pecchielan G, Baldo MA, Fabris S, Daniele S. A preliminary voltammetric investigation of silver ions in food simulants. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Bumbudsanpharoke N, Choi J, Park HJ, Ko S. Zinc migration and its effect on the functionality of a low density polyethylene-ZnO nanocomposite film. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Kim MH, Kim TH, Ko JA, Ko S, Oh JM, Park HJ. Kinetic and thermodynamic studies of silver migration from nanocomposites. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Addo Ntim S, Norris S, Goodwin DG, Breffke J, Scott K, Sung L, Thomas TA, Noonan GO. Effects of consumer use practices on nanosilver release from commercially available food contact materials. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2279-2290. [DOI: 10.1080/19440049.2018.1529437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Susana Addo Ntim
- Office of Regulatory science, US FDA, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Samuel Norris
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - David G. Goodwin
- Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Jens Breffke
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Keana Scott
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Lipiin Sung
- Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Treye A. Thomas
- US Consumer Product Safety Commission, Office of Hazard Identification and Reduction, Bethesda, MD, USA
| | - Gregory O. Noonan
- Office of Regulatory science, US FDA, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| |
Collapse
|
25
|
Vasile C. Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1834. [PMID: 30261658 PMCID: PMC6213312 DOI: 10.3390/ma11101834] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/10/2018] [Accepted: 09/22/2018] [Indexed: 01/20/2023]
Abstract
Special properties of the polymeric nanomaterials (nanoscale size, large surface area to mass ratio and high reactivity individualize them in food packaging materials. They can be processed in precisely engineered materials with multifunctional and bioactive activity. This review offers a general view on polymeric nanocomposites and nanocoatings including classification, preparation methods, properties and short methodology of characterization, applications, selected types of them used in food packaging field and their antimicrobial, antioxidant, biological, biocatalyst and so forth, functions.
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry (PPIMC), Romanian Academy, 41A Gr. Ghica Alley, RO 700487 Iasi, Romania.
| |
Collapse
|
26
|
Gray PJ, Hornick JE, Sharma A, Weiner RG, Koontz JL, Duncan TV. Influence of Different Acids on the Transport of CdSe Quantum Dots from Polymer Nanocomposites to Food Simulants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9468-9477. [PMID: 30004222 DOI: 10.1021/acs.est.8b02585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We fabricated polymer nanocomposites (PNCs) from low-density polyethylene and CdSe quantum dots (QDs) and used these materials to explore potential exposure after long-term storage in different acidic media that could be encountered in food contact applications. While the low-level release of QD-associated mass into all the food simulants was observed, exposure to dilute acetic acid resulted in more than double the mass transfer compared to that which occurred during exposure to dilute hydrochloric acid at the same pH. Conversely, exposure to citric acid resulted in a suppression of QD release. Permeation experiments and confocal microscopy were used to reveal mechanistic details underlying these mass-transfer phenomena. From this work, we conclude that the permeation of undissociated acid molecules into the polymer, limited by partitioning of the acids into the hydrophobic polymer, plays a larger role than pH in determining exposure to nanoparticles embedded in plastics. Although caution must be exercised when extrapolating these results to PNCs incorporating other nanofillers, these findings are significant because they undermine current thinking about the influence of pH on nanofiller release phenomena. From a regulatory standpoint, these results also support current guidance that 3% acetic acid is an acceptable acidic food simulant for PNCs fabricated from hydrophobic polymers because the other acids investigated resulted in significantly less exposure.
Collapse
Affiliation(s)
- Patrick J Gray
- Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , Bedford Park , Illinois 60501 , United States
| | - Jessica E Hornick
- Biological Imaging Facility , Northwestern University , Evanston , Illinois 60208 , United States
| | - Ashutosh Sharma
- Department of Food Science and Nutrition , Illinois Institute of Technology , Bedford Park , Illinois 60501 , United States
| | - Rebecca G Weiner
- Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , Bedford Park , Illinois 60501 , United States
| | - John L Koontz
- Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , Bedford Park , Illinois 60501 , United States
| | - Timothy V Duncan
- Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , Bedford Park , Illinois 60501 , United States
| |
Collapse
|
27
|
Sportelli MC, Izzi M, Volpe A, Clemente M, Picca RA, Ancona A, Lugarà PM, Palazzo G, Cioffi N. The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials. Antibiotics (Basel) 2018; 7:E67. [PMID: 30060553 PMCID: PMC6164857 DOI: 10.3390/antibiotics7030067] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) are well-known for their antimicrobial effects and several groups are proposing them as active agents to fight antimicrobial resistance. A wide variety of methods is available for nanoparticle synthesis, affording a broad spectrum of chemical and physical properties. In this work, we report on AgNPs produced by laser ablation synthesis in solution (LASiS), discussing the major features of this approach. Laser ablation synthesis is one of the best candidates, as compared to wet-chemical syntheses, for preparing Ag nano-antimicrobials. In fact, this method allows the preparation of stable Ag colloids in pure solvents without using either capping and stabilizing agents or reductants. LASiS produces AgNPs, which can be more suitable for medical and food-related applications where it is important to use non-toxic chemicals and materials for humans. In addition, laser ablation allows for achieving nanoparticles with different properties according to experimental laser parameters, thus influencing antibacterial mechanisms. However, the concentration obtained by laser-generated AgNP colloids is often low, and it is hard to implement them on an industrial scale. To obtain interesting concentrations for final applications, it is necessary to exploit high-energy lasers, which are quite expensive. In this review, we discuss the pros and cons of the use of laser ablation synthesis for the production of Ag antimicrobial colloids, taking into account applications in the food packaging field.
Collapse
Affiliation(s)
- Maria Chiara Sportelli
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
- Institute of Photonics and nanotechnology-National Research Council (IFN-CNR), Physics Department "M. Merlin", Bari, Italy, via Amendola 173, 70126 Bari, Italy.
| | - Margherita Izzi
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| | - Annalisa Volpe
- Institute of Photonics and nanotechnology-National Research Council (IFN-CNR), Physics Department "M. Merlin", Bari, Italy, via Amendola 173, 70126 Bari, Italy.
| | - Maurizio Clemente
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| | - Rosaria Anna Picca
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| | - Antonio Ancona
- Institute of Photonics and nanotechnology-National Research Council (IFN-CNR), Physics Department "M. Merlin", Bari, Italy, via Amendola 173, 70126 Bari, Italy.
| | - Pietro Mario Lugarà
- Institute of Photonics and nanotechnology-National Research Council (IFN-CNR), Physics Department "M. Merlin", Bari, Italy, via Amendola 173, 70126 Bari, Italy.
| | - Gerardo Palazzo
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| | - Nicola Cioffi
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
28
|
Benhacine F, Ouargli A, Hadj-Hamou AS. Preparation and Characterization of Novel Food Packaging Materials Based on Biodegradable PCL/Ag-Kaolinite Nanocomposites with Controlled Release Properties. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1471714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Fayçal Benhacine
- Laboratoire des Matériaux Polymères, Département de chimie macromoléculaire, Faculté de Chimie, USTHB, El Alia, Alger, Algérie
| | - Abderrahmane Ouargli
- Laboratoire des Matériaux Polymères, Département de chimie macromoléculaire, Faculté de Chimie, USTHB, El Alia, Alger, Algérie
| | - Assia Siham Hadj-Hamou
- Laboratoire des Matériaux Polymères, Département de chimie macromoléculaire, Faculté de Chimie, USTHB, El Alia, Alger, Algérie
| |
Collapse
|
29
|
Dudefoi W, Villares A, Peyron S, Moreau C, Ropers MH, Gontard N, Cathala B. Nanoscience and nanotechnologies for biobased materials, packaging and food applications: New opportunities and concerns. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Hannon JC, Kerry JP, Cruz-Romero M, Azlin-Hasim S, Morris M, Cummins E. Migration assessment of silver from nanosilver spray coated low density polyethylene or polyester films into milk. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Kim JM, Lee MH, Ko JA, Kang DH, Bae H, Park HJ. Influence of Food with High Moisture Content on Oxygen Barrier Property of Polyvinyl Alcohol (PVA)/Vermiculite Nanocomposite Coated Multilayer Packaging Film. J Food Sci 2018; 83:349-357. [PMID: 29369361 DOI: 10.1111/1750-3841.14012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study investigates the potential complications in applying nanoclay-based waterborne coating to packaging films for food with high moisture content. Multilayer packaging films were prepared by dry laminating commercially available polyvinyl alcohol (PVA)/vermiculite nanocomposite coating films and linear low-density polyethylene film, and the changes in oxygen barrier properties were investigated according to different relative humidity using 3 types of food simulants. When the relative humidity was above 60%, the oxygen permeability increased sharply, but this was reversible. Deionized water and 3% acetic acid did not cause any large structural change in the PVA/vermiculite nanocomposite but caused a reversible deterioration of the oxygen barrier properties. In contrast, 50% ethanol, a simulant for the semifatty food, induced irreversible structural changes with deterioration of the oxygen barrier property. These changes are due to the characteristics of PVA rather than vermiculite. PRACTICAL APPLICATION We believe this manuscript would be of interest to the wide group of researchers, organizations, and companies in the field of developing nanoclay-based gas barrier packaging for foods with high moisture content. Hence, we wish to diffuse our knowledge to the scientific community.
Collapse
Affiliation(s)
- Jung Min Kim
- School of Life Sciences and Biotechnology, Korea Univ., 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Republic of Korea
| | - Min Hyeock Lee
- School of Life Sciences and Biotechnology, Korea Univ., 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Republic of Korea
| | - Jung A Ko
- School of Life Sciences and Biotechnology, Korea Univ., 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Republic of Korea
| | - Dong Ho Kang
- Korea Packaging Center, Korea Inst. of Industrial Technology, Bucheon, Republic of Korea
| | - Hojae Bae
- Dept. of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Inst., Konkuk Univ., Hwayang-dong, Kwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea Univ., 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 136-701, Republic of Korea
| |
Collapse
|
32
|
Choi JI, Chae SJ, Kim JM, Choi JC, Park SJ, Choi HJ, Bae H, Park HJ. Potential silver nanoparticles migration from commercially available polymeric baby products into food simulants. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:996-1005. [DOI: 10.1080/19440049.2017.1411611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jeong In Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Song Ji Chae
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jung Min Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jae Chun Choi
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Osong, Republic of Korea
| | - Se Jong Park
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Osong, Republic of Korea
| | - Hee Ju Choi
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation, Osong, Republic of Korea
| | - Hojae Bae
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Hyun Jin Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Polat S, Fenercioglu H, Unal Turhan E, Guclu M. Effects of nanoparticle ratio on structural, migration properties of polypropylene films and preservation quality of lemon juice. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13541] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Süleyman Polat
- Department of Food Engineering, Faculty of Agriculture; Cukurova University, Balcalı, 01330; Adana Turkey
| | - Hasan Fenercioglu
- Department of Food Engineering, Faculty of Agriculture; Cukurova University, Balcalı, 01330; Adana Turkey
| | - Emel Unal Turhan
- Kadirli School of Applied Sciences; Osmaniye Korkut Ata University; 80750 Osmaniye Turkey
| | | |
Collapse
|
34
|
Abstract
Food packaging is an integral component of the global food supply chain, protecting food from dirt, chemical contaminants and microorganisms, and helping to maintain food quality during transport and storage. Much of this packaging relies on modern polymeric materials, which have been developed to help control the exposure of products to light, oxygen and moisture. These have the benefits of being lightweight, cost-effective, reusable, recyclable and resistant to chemical and physical damage. Although traditional polymeric materials can fulfill many of these requirements, efforts continue to maintain or improve packaging performance while reducing the use of raw materials, waste and costs. The use of nanotechnology to produce nanocomposite materials has great promise to improve the characteristics of food packaging, but many of the products are still in their infancy. Only a relatively small number of nanoenabled products have entered the market and many, but not all, occupy niche markets. This chapter briefly describes the areas where nanomaterials have been used in research and commercial products to improve mechanical and barrier properties and to create active and intelligent packaging materials. It also addresses the regulation of nanomaterials in food contact applications and migration when evaluating the safety of these materials.
Collapse
Affiliation(s)
- Susana Addo Ntim
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration 5001 Campus Drive College Park MD 20740 USA
| | - Gregory O. Noonan
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration 5001 Campus Drive College Park MD 20740 USA
| |
Collapse
|
35
|
Störmer A, Bott J, Kemmer D, Franz R. Critical review of the migration potential of nanoparticles in food contact plastics. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.01.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Jokar M, Pedersen GA, Loeschner K. Six open questions about the migration of engineered nano-objects from polymer-based food-contact materials: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 34:434-450. [DOI: 10.1080/19440049.2016.1271462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maryam Jokar
- Division of Food Technology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Gitte Alsing Pedersen
- Division for Risk Assessment and Nutrition, National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Katrin Loeschner
- Division of Food Technology, National Food Institute, Technical University of Denmark, Søborg, Denmark
| |
Collapse
|
37
|
Ozaki A, Kishi E, Ooshima T, Hase A, Kawamura Y. Contents of Ag and other metals in food-contact plastics with nanosilver or Ag ion and their migration into food simulants. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1490-8. [DOI: 10.1080/19440049.2016.1217067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Asako Ozaki
- Research Division, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Eri Kishi
- Research Division, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Tomoko Ooshima
- Research Division, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Atsushi Hase
- Research Division, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Yoko Kawamura
- Division of Food Additives, National Institute of Health Sciences, Tokyo, Japan
| |
Collapse
|
38
|
Caballero-Guzman A, Nowack B. A critical review of engineered nanomaterial release data: Are current data useful for material flow modeling? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:502-517. [PMID: 26970875 DOI: 10.1016/j.envpol.2016.02.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 05/29/2023]
Abstract
Material flow analysis (MFA) is a useful tool to predict the flows of engineered nanomaterials (ENM) to the environment. The quantification of release factors is a crucial part of MFA modeling. In the last years an increasing amount of literature on release of ENM from materials and products has been published. The purpose of this review is to analyze the strategies implemented by MFA models to include these release data, in particular to derive transfer coefficients (TC). Our scope was focused on those articles that analyzed the release from applications readily available in the market in settings that resemble average use conditions. Current MFA studies rely to a large extent on extrapolations, authors' assumptions, expert opinions and other informal sources of data to parameterize the models. We were able to qualitatively assess the following aspects of the release literature: (i) the initial characterization of ENM provided, (ii) quantitative information on the mass of ENM released and its characterization, (iii) description of transformation reactions and (iv) assessment of the factors determining release. Although the literature on ENM release is growing, coverage of exposure scenarios is still limited; only 20% of the ENMs used industrially and 36% of the product categories involved have been investigated in release studies and only few relevant release scenarios have been described. Furthermore, the information provided is rather incomplete concerning descriptions and characterizations of ENMs and the released materials. Our results show that both the development of methods to define the TCs and of protocols to enhance assessment of ENM release from nano-applications will contribute to increase the exploitability of the data provided for MFA models. The suggestions we provide in this article will likely contribute to an improved exposure modeling by providing ENM release estimates closer to reality.
Collapse
Affiliation(s)
- Alejandro Caballero-Guzman
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Bernd Nowack
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| |
Collapse
|
39
|
Gallocchio F, Cibin V, Biancotto G, Roccato A, Muzzolon O, Carmen L, Simone B, Manodori L, Fabrizi A, Patuzzi I, Ricci A. Testing nano-silver food packaging to evaluate silver migration and food spoilage bacteria on chicken meat. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1063-71. [PMID: 27147130 DOI: 10.1080/19440049.2016.1179794] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Migration of nanomaterials from food containers into food is a matter of concern because of the potential risk for exposed consumers. The aims of this study were to evaluate silver migration from a commercially available food packaging containing silver nanoparticles into a real food matrix (chicken meat) under plausible domestic storage conditions and to test the contribution of such packaging to limit food spoilage bacteria proliferation. Chemical analysis revealed the absence of silver in chicken meatballs under the experimental conditions in compliance with current European Union legislation, which establishes a maximum level of 0.010 mg kg(-1) for the migration of non-authorised substances through a functional barrier (Commission Regulation (EU) No. 10/2011). On the other hand, microbiological tests (total microbial count, Pseudomonas spp. and Enterobacteriaceae) showed no relevant difference in the tested bacteria levels between meatballs stored in silver-nanoparticle plastic bags or control bags. This study shows the importance of testing food packaging not only to verify potential silver migration as an indicator of potential nanoparticle migration, but also to evaluate the benefits in terms of food preservation so as to avoid unjustified usage of silver nanoparticles and possible negative impacts on the environment.
Collapse
Affiliation(s)
- Federica Gallocchio
- a Department of Food Safety , Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) , Legnaro , Italy
| | - Veronica Cibin
- a Department of Food Safety , Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) , Legnaro , Italy
| | - Giancarlo Biancotto
- a Department of Food Safety , Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) , Legnaro , Italy
| | - Anna Roccato
- a Department of Food Safety , Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) , Legnaro , Italy
| | - Orietta Muzzolon
- a Department of Food Safety , Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) , Legnaro , Italy
| | - Losasso Carmen
- a Department of Food Safety , Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) , Legnaro , Italy
| | - Belluco Simone
- a Department of Food Safety , Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) , Legnaro , Italy.,b Department of Animal Medicine Production and Health , Università di Padova , Legnaro , Italy
| | - Laura Manodori
- c European Centre for the Sustainable Impact of Nanotechnology, Veneto Nanotech S.C.pA , Rovigo , Italy
| | - Alberto Fabrizi
- d Department of Management and Engineering , Università di Padova , Vicenza , Italy
| | - Ilaria Patuzzi
- a Department of Food Safety , Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) , Legnaro , Italy
| | - Antonia Ricci
- a Department of Food Safety , Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) , Legnaro , Italy
| |
Collapse
|
40
|
Addo Ntim S, Thomas TA, Noonan GO. Influence of aqueous food simulants on potential nanoparticle detection in migration studies involving nanoenabled food-contact substances. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:905-12. [DOI: 10.1080/19440049.2016.1174506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Susana Addo Ntim
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration (USFDA), College Park, MD, USA
| | - Treye A. Thomas
- Office of Hazard Identification and Reduction, US Consumer Product Safety Commission, Bethesda, MD, USA
| | - Gregory O. Noonan
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration (USFDA), College Park, MD, USA
| |
Collapse
|
41
|
|
42
|
Shaili T, Abdorreza MN, Fariborz N. Functional, thermal, and antimicrobial properties of soluble soybean polysaccharide biocomposites reinforced by nano TiO2. Carbohydr Polym 2015; 134:726-31. [PMID: 26428178 DOI: 10.1016/j.carbpol.2015.08.073] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/30/2015] [Accepted: 08/22/2015] [Indexed: 11/22/2022]
Abstract
This study describes a new polysaccharide-based bionanocomposite developed through solvent casting. Different concentrations (i.e., 0%, 1%, 3%, and 5% (w/w)) of nano titanium dioxide (TiO2-N) were incorporated into soluble soybean polysaccharide (SSPS), and the functional properties of the resultant SSPS films were estimated. Incorporation of TiO2-N into the SSPS matrix decreased water vapor permeability from 7.41 to 4.44 × (10(-11)gm(-1) s(-1) Pa(-1)) and oxygen permeability from 202 to 98 (cm(3)μmm(-2) d(-1) atm(-1)). Moisture content also decreased, the glass transition temperature increased, and the mechanical properties and heat seal strength of the SSPS films improved. SSPS bionanocomposite films showed excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus. In summary, TiO2-N shows potential use as a filler in SSPS-based films for the food and non-food industries.
Collapse
Affiliation(s)
- Teymourpour Shaili
- Food Biopolymer Research Group, Food Science and Technology Department, Damghan Branch, Islamic Azad University, Damghan, Semnan, Iran
| | - Mohammadi Nafchi Abdorreza
- Food Biopolymer Research Group, Food Science and Technology Department, Damghan Branch, Islamic Azad University, Damghan, Semnan, Iran.
| | - Nahidi Fariborz
- Food Biopolymer Research Group, Food Science and Technology Department, Damghan Branch, Islamic Azad University, Damghan, Semnan, Iran
| |
Collapse
|
43
|
Benhacine F, Hadj-Hamou AS, Habi A. Development of long-term antimicrobial poly (ε-caprolactone)/silver exchanged montmorillonite nanocomposite films with silver ion release property for active packaging use. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1543-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Feichtmeier NS, Ruchter N, Zimmermann S, Sures B, Leopold K. A direct solid sampling analysis method for the detection of silver nanoparticles in biological matrices. Anal Bioanal Chem 2015; 408:295-305. [DOI: 10.1007/s00216-015-9108-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 11/30/2022]
|
45
|
Benhacine F, Hadj-Hamou AS, Habi A, Grohens Y. Development of Antimicrobial Poly(∊-caprolactone)/Poly(lactic acid)/Silver Exchanged Montmorillonite Nanoblend Films with Silver Ion Release Property for Active Packaging Use. INT POLYM PROC 2015. [DOI: 10.3139/217.3087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Biodegradable PCL/PLA/Ag-MMT nanoblends with a strong antibacterial activity and a silver ion release property were successfully prepared by melt blending process for active packaging use. The presence of silver exchanged montmorillonite and its interaction with PCL/PLA matrix was evidenced by ATR/FTIR. The morphology was investigated by both XRD and TEM analyses. It was suggested the formation of mainly exfoliated structures with a random dispersion of spherical silver nanoparticles within their composite matrices. The thermal and mechanical properties of these nanomaterials were thoroughly investigated and compared to those of the unfilled blends. The potential of the silver ion release from the PCL/PLA/Ag-MMT film was estimated after immersion in water for several periods of time. The results showed an increase of the amount of silver ions released with growing immersion time of PCL/PLA/Ag-MMT nanoblends. Due to the presence of silver nanoparticles in their matrices, PCL/PLA/Ag-MMT nanoblends showed a total bacteria growth inhibition.
Collapse
Affiliation(s)
- F. Benhacine
- Département de Chimie Macromoléculaire , Laboratoire des Matériaux Polymères, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, El Alia, Alger , Algeria
| | - A. S. Hadj-Hamou
- Département de Chimie Macromoléculaire , Laboratoire des Matériaux Polymères, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, El Alia, Alger , Algeria
| | - A. Habi
- Laboratoire des Matériaux Organiques , Faculté de Technologie, Université A. Mira, Béjaïa , Algeria
| | - Y. Grohens
- Laboratoire d'Ingénierie des Matériaux de Bretagne , Equipe E2PIC, Université de Bretagne Sud, Lorient , France
| |
Collapse
|
46
|
Addo Ntim S, Thomas TA, Begley TH, Noonan GO. Characterisation and potential migration of silver nanoparticles from commercially available polymeric food contact materials. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1003-11. [PMID: 25831019 DOI: 10.1080/19440049.2015.1029994] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The potential for consumer exposure to nano-components in food contact materials (FCMs) is dependent on the migration of nanomaterials into food. Therefore, characterising the physico-chemical properties and potential for migration of constituents is an important step in assessing the safety of FCMs. A number of commercially available food storage products, purchased domestically within the United States and internationally, that claim to contain nanosilver were evaluated. The products were made of polyethylene, polypropylene and polyphenylene ether sulfone and all contained silver (0.001-36 mg kg(-1) of polymer). Silver migration was measured under various conditions, including using 3% acetic acid and water as food simulants. Low concentrations (sub-ppb levels) of silver were detected in the migration studies generally following a trend characterised by a surface desorption phenomenon, where the majority of the silver migration occurred in the first of three consecutive exposures. Silver nanoparticles were not detected in food simulants, suggesting that the silver migration may be due solely to ionic silver released into solution from oxidation of the silver nanoparticle surface. The absence of detectable silver nanoparticles was consistent with expectations from a physico-chemical view point. For the products tested, current USFDA guidance for evaluating migration from FCMs was applicable.
Collapse
Affiliation(s)
- Susana Addo Ntim
- a US Food and Drug Administration (USFDA) , Center for Food Safety and Applied Nutrition , College Park , MD , USA
| | | | | | | |
Collapse
|
47
|
Luo Z, Qin Y, Ye Q. Effect of nano-TiO2-LDPE packaging on microbiological and physicochemical quality of Pacific white shrimp during chilled storage. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12807] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zisheng Luo
- Zhejiang Key Laboratory for Agro-Food Processing; College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou 310058 China
| | - Yu Qin
- Zhejiang Key Laboratory for Agro-Food Processing; College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou 310058 China
| | - Qingyang Ye
- Zhejiang Key Laboratory for Agro-Food Processing; College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|