1
|
Lautz LS, Melchers TC, Noorlander A, Stoopen G, Arrizabalaga-Larrañaga A. Application of a generic PBK model for beef cattle: Tissue/fluid correlations of paracetamol and NSAIDs. Food Chem Toxicol 2024; 190:114812. [PMID: 38879144 DOI: 10.1016/j.fct.2024.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) and paracetamol can be administered off-label to cattle. Since the use of these veterinary medicines in cattle may pose a public health risk after meat consumption, it is important to translate measured concentrations in urine and tissues into concentrations in meat for human consumption. A generic physiologically-based kinetic (PBK) model for cattle can enable this translation. In this work, a beef cattle PBK model was applied to calculate the relationships between concentrations in different bovine tissues and those were compared to measured concentrations in different matrices. Sixty-seven kidney samples, the corresponding urine and meat samples, and available 19 serum samples were analysed. Overall, 70% of the PBK model predictions are within a 2-fold factor and relationships for kidney/meat, urine/meat, and plasma/meat ratios were established. The conversions of measured kidney concentrations into meat concentrations were mostly within a factor two, while those based on plasma and urine were underpredicted. Based on these ratios, plasma and urine could be used as an appropriate surrogate matrix for a fast, simple in vivo sample screening test under field conditions, such as in local farms and slaughterhouses, to predict a maximum residue level exceedance in meat, reducing the number of test samples.
Collapse
Affiliation(s)
- L S Lautz
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - T C Melchers
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - A Noorlander
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - G Stoopen
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - A Arrizabalaga-Larrañaga
- Wageningen Food Safety Research, Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Mi K, Sun L, Zhang L, Tang A, Tian X, Hou Y, Sun L, Huang L. A physiologically based pharmacokinetic/pharmacodynamic model to determine dosage regimens and withdrawal intervals of aditoprim against Streptococcus suis. Front Pharmacol 2024; 15:1378034. [PMID: 38694922 PMCID: PMC11061430 DOI: 10.3389/fphar.2024.1378034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Streptococcus suis (S. suis) is a zoonotic pathogen threatening public health. Aditoprim (ADP), a novel veterinary medicine, exhibits an antibacterial effect against S. suis. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model was used to determine the dosage regimens of ADP against S. suis and withdrawal intervals. Methods: The PBPK model of ADP injection can predict drug concentrations in plasma, liver, kidney, muscle, and fat. A semi-mechanistic pharmacodynamic (PD) model, including susceptible subpopulation and resistant subpopulation, is successfully developed by a nonlinear mixed-effect model to evaluate antibacterial effects. An integrated PBPK/PD model is conducted to predict the time-course of bacterial count change and resistance development under different ADP dosages. Results: ADP injection, administrated at 20 mg/kg with 12 intervals for 3 consecutive days, can exert an excellent antibacterial effect while avoiding resistance emergence. The withdrawal interval at the recommended dosage regimen is determined as 18 days to ensure food safety. Discussion: This study suggests that the PBPK/PD model can be applied as an effective tool for the antibacterial effect and safety evaluation of novel veterinary drugs.
Collapse
Affiliation(s)
- Kun Mi
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Lei Sun
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Lan Zhang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aoran Tang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyuan Tian
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yixuan Hou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingling Sun
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
- Department of Veterinary Medicine Science, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Dubbelboer IR, Le Roux-Pullen L, Gehring R. Systematic review of physiologically based kinetic lactation models for transfer of xenobiotic compounds to milk. Toxicol Appl Pharmacol 2023; 467:116495. [PMID: 36996912 DOI: 10.1016/j.taap.2023.116495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Lactational elimination has been described mathematically for nearly 50 years. Over 40 published articles, containing >50 physiologically based kinetic (PBK) lactation models were included in the systematic review. These PBK models described the lactational elimination of xenobiotic compounds in humans, rats, mice, and dairy cows and goats. A total of 78 compounds have been modelled, ranging from industrial chemicals, pesticides, to pain medication, antibiotics, and caffeine. Few models included several species or compounds, and models were thus generally not translational or generic. Three dairy cow models mechanistically described the intramammary disposition of pharmaceuticals after intramammary administration, including volume changes caused by milking, while empirically describing the remaining pharmacokinetics. The remaining models were semi- or whole body PBK models, describing long-term exposure of environmental pollutants, or short-term exposure of pharmaceuticals. The absolute majority described the disposition to the mammary gland or milk with perfusion limited compartments, but permeability limited models were available as well. With long-term exposure, models often included changes in milk volume and/or consumption by the offspring, and changes in body weight of offspring. Periodic emptying of the mammary gland, as with feeding or milking, was sparsely applied. Rodent models used similar physiological parameters, while values of physiological parameters applied in human models could range widely. When milk composition was included in the models, it most often included the fat content. The review gives an extensive overview of the applied functions and modelling strategies of PBK lactation models.
Collapse
|
4
|
Physiological based pharmacokinetic and biopharmaceutics modelling of subcutaneously administered compounds – an overview of in silico models. Int J Pharm 2022; 621:121808. [DOI: 10.1016/j.ijpharm.2022.121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022]
|
5
|
Li Y, Jiang J, Wang Q, Zhu L, Jia W, Chen X, Zhang Y. The construction and application of physiologically based toxicokinetic models for acrylamide, glycidamide and their biomarkers in rats and humans. CHEMOSPHERE 2022; 292:133458. [PMID: 34971622 DOI: 10.1016/j.chemosphere.2021.133458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Acrylamide (AA), a class 2A probable carcinogen to humans classified by the International Agency for Research on Cancer, has attracted extensive attention worldwide since it was widely used in industrial and domestic water treatment and detected in thermal processing foods. The metabolic adducts of AA and its primary metabolite glycidamide (GA) have been served as biomonitoring markers of AA intake, but the physiologically based toxicokinetics (PBTK) models to estimate internal dosimetry still remain unclear. An updated PBTK model for AA, GA and their metabolic biomarkers in rats and humans was developed and extended with time-course datasets from both literatures and our experiments. With adjustments to the model parameters, linear regression correlation coefficient (R2) between the fitting values and the validation datasets of rats and humans was greater than 0.76. The current model fits well with the experimental datasets of urinary N-acetyl-S-(2-carbamoylethyl)-l-cysteine (AAMA) and (N-(R,S)-acetyl-S-(carbamoyl-2-hydroxyethyl)-l-cysteine) (GAMA) of rats exposed to AA from 0.1 to 50 mg/kg b.w. and humans exposed to AA from 0.0005 to 0.020 mg/kg b.w., indicating the robustness of the current models. Parameters for adduct of AA with N-terminal valine of hemoglobin (AAVal) were extended to humans and validated. Kinetic parameters for rats were assessed and validated based upon fit to the experimental datasets for liver N3-(2-carbamoyl-2-hydroxyethyl)-adenine (N3-GA-Ade) and N7-(2-carbamoyl-2-hydroxyethyl)-guanine (N7-GA-Gua) adducts. Compared with the previous model, the developed model included the correlation between AA intake and its mercapturic acid adducts, AAMA and GAMA, in a larger dose range with new experimental data, and parameters for AAVal, N3-GA-Ade and N7-GA-Gua were improved and verified. The current multi-component PBTK models provide a superior foundation for the estimation of short-term to medium and long-term intake levels of human exposure to AA.
Collapse
Affiliation(s)
- Yaoran Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jiahao Jiang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qiao Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Li Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Jia
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xinyu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
6
|
A physiologically based pharmacokinetic (PBPK) model exploring the blood-milk barrier in lactating species - A case study with oxytetracycline administered to dairy cows and goats. Food Chem Toxicol 2022; 161:112848. [DOI: 10.1016/j.fct.2022.112848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
|
7
|
Martin MS, Kleinhenz MD, White BJ, Johnson BT, Montgomery SR, Curtis AK, Weeder MM, Blasi DA, Almes KM, Amachawadi RG, Salih HM, Miesner MD, Baysinger AK, Nickell JS, Coetzee JF. Assessment of pain associated with bovine respiratory disease and its mitigation with flunixin meglumine in cattle with induced bacterial pneumonia. J Anim Sci 2021; 100:6473170. [PMID: 34932121 PMCID: PMC8849227 DOI: 10.1093/jas/skab373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 11/14/2022] Open
Abstract
Pleuritic chest pain from bacterial pneumonia is often reported in human medicine. However, studies investigating pain associated with bovine respiratory disease (BRD) are lacking. The objectives of this study were to assess if bacterial pneumonia elicits a pain response in calves with experimentally induced BRD and to determine the analgesic effects of transdermally administered flunixin. Twenty-six calves, 6-7 months of age, with no history of BRD were enrolled into 1 of 3 treatment groups: (1) experimentally induced BRD + transdermal flunixin at 3.3 mg/kg twice, 24 h apart (BRD + FTD); (2) experimentally induced BRD + placebo (BRD + PLBO); and (3) sham induction + placebo (CNTL + PLBO). Calves induced with BRD were inoculated with Mannheimia haemolytica via bronchoalveolar lavage. Outcomes were collected from -48 to 192 hours post-treatment and included serum cortisol; infrared thermography; mechanical nociceptive threshold; substance P; kinematic gait analysis; visual analog scale (VAS); clinical illness score; computerized lung score; average activity and rumination level; prostaglandin E2 metabolite; plasma serum amyloid A and rectal temperature. Outcomes were evaluated using either a generalized logistic mixed model for categorical variables or a generalized linear mixed model for continuous variables. Right front force differed by treatment (P = 0.01). The BRD + PLBO had lower mean force applied to the right front limb (85.5 kg) compared to BRD + FTD (96.5 kg) (P < 0.01). Average VAS differed by a treatment by time interaction (P = 0.01). The VAS scores differed for BRD + PLBO at -48 (3.49 mm) compared to 168 and 192 h (13.49 and 13.64 mm, respectively) (P < 0.01). Activity for BRD + PLBO was higher at -48 h (27 min/h) compared to 48, 72, 120 and 168 h (≤ 22.24 min/h) (P < 0.01). Activity differed by a treatment by time interaction (P = 0.01). Activity for BRD + FTD was higher at -48 and 0 h (28.2 and 28.2 min/h, respectively) compared to 48, 72, 96 and 168 h (≤ 23.7 min/h) (P < 0.01). Results show a combination of reduced activity levels, decreased force on the right front limb, and increased visual analog scale pain scores all support that bacterial pneumonia in cattle is painful. Differences in right front force indicate that flunixin transdermal may attenuate certain pain biomarkers in cattle with BRD. These findings suggest that BRD is painful and analgesic drugs may improve the humane aspects of care for cattle with BRD.
Collapse
Affiliation(s)
- M S Martin
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - M D Kleinhenz
- Department of Clinical Sciences, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - B J White
- Department of Clinical Sciences, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - B T Johnson
- Department of Diagnostic Medicine and Pathobiology & Kansas State Veterinary Diagnostic Laboratory, Kansas State University College of Veterinary Medicine, Manhattan, KS
| | - S R Montgomery
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - A K Curtis
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - M M Weeder
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - D A Blasi
- Department of Animal Science, Kansas State University, Manhattan, KS, United States
| | - K M Almes
- Department of Diagnostic Medicine and Pathobiology & Kansas State Veterinary Diagnostic Laboratory, Kansas State University College of Veterinary Medicine, Manhattan, KS
| | - R G Amachawadi
- Department of Clinical Sciences, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - H M Salih
- Department of Diagnostic Medicine and Pathobiology & Kansas State Veterinary Diagnostic Laboratory, Kansas State University College of Veterinary Medicine, Manhattan, KS
| | - M D Miesner
- Department of Clinical Sciences, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | | | - J S Nickell
- Merck Animal Health, De Soto, KS, United States
| | - J F Coetzee
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| |
Collapse
|
8
|
Nauwelaerts N, Deferm N, Smits A, Bernardini C, Lammens B, Gandia P, Panchaud A, Nordeng H, Bacci ML, Forni M, Ventrella D, Van Calsteren K, DeLise A, Huys I, Bouisset-Leonard M, Allegaert K, Annaert P. A comprehensive review on non-clinical methods to study transfer of medication into breast milk - A contribution from the ConcePTION project. Biomed Pharmacother 2021; 136:111038. [PMID: 33526310 DOI: 10.1016/j.biopha.2020.111038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022] Open
Abstract
Breastfeeding plays a major role in the health and wellbeing of mother and infant. However, information on the safety of maternal medication during breastfeeding is lacking for most medications. This leads to discontinuation of either breastfeeding or maternal therapy, although many medications are likely to be safe. Since human lactation studies are costly and challenging, validated non-clinical methods would offer an attractive alternative. This review gives an extensive overview of the non-clinical methods (in vitro, in vivo and in silico) to study the transfer of maternal medication into the human breast milk, and subsequent neonatal systemic exposure. Several in vitro models are available, but model characterization, including quantitative medication transport data across the in vitro blood-milk barrier, remains rather limited. Furthermore, animal in vivo models have been used successfully in the past. However, these models don't always mimic human physiology due to species-specific differences. Several efforts have been made to predict medication transfer into the milk based on physicochemical characteristics. However, the role of transporter proteins and several physiological factors (e.g., variable milk lipid content) are not accounted for by these methods. Physiologically-based pharmacokinetic (PBPK) modelling offers a mechanism-oriented strategy with bio-relevance. Recently, lactation PBPK models have been reported for some medications, showing at least the feasibility and value of PBPK modelling to predict transfer of medication into the human milk. However, reliable data as input for PBPK models is often missing. The iterative development of in vitro, animal in vivo and PBPK modelling methods seems to be a promising approach. Human in vitro models will deliver essential data on the transepithelial transport of medication, whereas the combination of animal in vitro and in vivo methods will deliver information to establish accurate in vitro/in vivo extrapolation (IVIVE) algorithms and mechanistic insights. Such a non-clinical platform will be developed and thoroughly evaluated by the Innovative Medicines Initiative ConcePTION.
Collapse
Affiliation(s)
- Nina Nauwelaerts
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, O&N II Herestraat, 49 3000, Leuven, Belgium.
| | - Neel Deferm
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, O&N II Herestraat, 49 3000, Leuven, Belgium.
| | - Anne Smits
- Neonatal Intensive Care Unit, University Hospitals Leuven, UZ Leuven, Neonatology, Herestraat 49, 3000, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, Belgium.
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | | | - Peggy Gandia
- Laboratoire de Pharmacocinétique et Toxicologie, Centre Hospitalier Universitaire de Toulouse, France.
| | - Alice Panchaud
- Service of Pharmacy Service, Lausanne University Hospital and University of Lausanne, Switzerland; Institute of Primary Health Care (BIHAM), University of Bern, Switzerland
| | - Hedvig Nordeng
- PharmacoEpidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, PB. 1068 Blindern, 0316, Oslo, Norway.
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano dell'Emilia, BO, Italy.
| | | | - Anthony DeLise
- Novartis Pharmaceuticals Corporation, Novartis Institutes for BioMedical Research, One Health Plaza, East Hanover, NJ, 07936, USA.
| | - Isabelle Huys
- KU Leuven, Department of Clinical Pharmacology and Pharmacotherapy, ON II Herestraat 49 - bus, 521 3000, Leuven, Belgium.
| | - Michele Bouisset-Leonard
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, Werk Klybeck Postfach, Basel, CH-4002, Switzerland.
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Belgium; KU Leuven, Department of Clinical Pharmacology and Pharmacotherapy, ON II Herestraat 49 - bus, 521 3000, Leuven, Belgium; Department of Clinical Pharmacy, Erasmus MC, Rotterdam, the Netherlands.
| | - Pieter Annaert
- KU Leuven Drug Delivery and Disposition Lab, Department of Pharmaceutical and Pharmacological Sciences, O&N II Herestraat, 49 3000, Leuven, Belgium.
| |
Collapse
|
9
|
Yang F, Yang F, Wang D, Zhang CS, Wang H, Song ZW, Shao HT, Zhang M, Yu ML, Zheng Y. Development and Application of a Water Temperature Related Physiologically Based Pharmacokinetic Model for Enrofloxacin and Its Metabolite Ciprofloxacin in Rainbow Trout. Front Vet Sci 2021; 7:608348. [PMID: 33585600 PMCID: PMC7874017 DOI: 10.3389/fvets.2020.608348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023] Open
Abstract
Enrofloxacin (ENR) has been approved for the treatment of infections in aquaculture, but it may cause tissue residue. This research aimed to develop and validate a water temperature related PBPK model, including both ENR and ciprofloxacin (CIP), in rainbow trout, and to predict further their residue concentrations and the withdrawal periods for ENR at different water temperatures. With the published concentrations data, a flow-limited PBPK model including both ENR and CIP sub-models was developed to predict ENR and CIP concentrations in tissues and plasma/serum after intravenous, oral, or immersion administration. A Monte Carlo simulation including 500 iterations was further incorporated into this model. Based on the model and Monte Carlo analysis, the withdrawal intervals were estimated for different dosage regimens and at different water temperatures, ranging from 80 to 272 degree-days. All of these values were shorter than the labeled withdrawal period (500 degree-days) in fish. This model provided a useful tool for predicting the tissue residues of ENR and CIP in rainbow trout under different dosage regimens and at different water temperatures.
Collapse
Affiliation(s)
- Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.,Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, Henan University of Science and Technology, Luoyang, China
| | - Fang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dan Wang
- Jiaozuo Livestock Product Quality and Safety Monitoring Center, Jiaozuo, China
| | - Chao-Shuo Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Han Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhe-Wen Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Hao-Tian Shao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Mei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Meng-Li Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yang Zheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
10
|
Woodward AP, Morin D, Whittem T. Population physiologically based modeling of pirlimycin milk concentrations in dairy cows. J Dairy Sci 2020; 103:10639-10650. [PMID: 32921458 DOI: 10.3168/jds.2020-18760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
Predictions of drug residues in milk are critical in food protection and are a major consideration in the economics of treatment of mastitis in dairy cows. Nonlinear mixed-effects modeling (NLME) has been advocated as a suitable pharmaco-statistical method for the study of drug residues in milk. Recent developments in physiologically based pharmacokinetic (PBPK) modeling of intramammary drugs allow the combination of a mechanistic description of milk pharmacokinetics with NLME methods. The PBPK model was applied to NLME analysis of a data set consisting of milk drug concentrations from 78 healthy cows and 117 with clinical mastitis. Pirlimycin milk pharmacokinetics were adequately described by the model across the range of observed concentrations. Mastitis was characterized by increased variance in milk production volume. Udder residual volume was larger in cows with 1, or 2 or greater diseased mammary glands than in the healthy cows. Low-producing cows had a greater risk of prolonged milk residues. With the exclusion of the low-production cows, the model predicted that healthy cows required a milk discard time 12 h longer than that indicated by the label, and the diseased cows 36 h longer than indicated by the label. More pirlimycin was systemically absorbed in the gram-positive infected compared with the gram-negative infected or healthy cows, suggesting a greater risk of violative meat residues in gram-positive infected cows. Using NLME and PBPK models, we identified factors associated with changes in pirlimycin milk residues that may affect food safety. This model extends the verification of a simple physiologically based framework for the study of intramammary drugs.
Collapse
Affiliation(s)
- A P Woodward
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia, 3030.
| | - D Morin
- College of Veterinary Medicine, University of Illinois, Urbana 61802
| | - T Whittem
- Melbourne Veterinary School, Melbourne, Victoria, Australia, 3030
| |
Collapse
|
11
|
Bates JL, Karriker LA, Rajewski SM, Lin Z, Gehring R, Li M, Riviere JE, Coetzee JF. A study to assess the correlation between plasma, oral fluid and urine concentrations of flunixin meglumine with the tissue residue depletion profile in finishing-age swine. BMC Vet Res 2020; 16:211. [PMID: 32571315 PMCID: PMC7310148 DOI: 10.1186/s12917-020-02429-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background Flunixin meglumine (FM) was investigated for the effectiveness of plasma, oral fluid, and urine concentrations to predict tissue residue depletion profiles in finishing-age swine, along with the potential for untreated pigs to acquire tissue residues following commingled housing with FM-treated pigs. Twenty pigs were housed in groups of three treated and one untreated control. Treated pigs received one 2.2 mg/kg dose of FM intramuscularly. Before treatment and at 1, 3, 6, 12, 24, 36, and 48 h (h) after treatment, plasma samples were taken. At 1, 4, 8, 12 and 16 days (d) post-treatment, necropsy and collection of plasma, urine, oral fluid, muscle, liver, kidney, and injection site samples took place. Analysis of flunixin concentrations using liquid chromatography/tandem mass spectrometry was done. A published physiologically based pharmacokinetic (PBPK) model for flunixin in cattle was extrapolated to swine to simulate the measured data. Results Plasma concentrations of flunixin were the highest at 1 h post-treatment, ranging from 1534 to 7040 ng/mL, and were less than limit of quantification (LOQ) of 5 ng/mL in all samples on Day 4. Flunixin was detected in the liver and kidney only on Day 1, but was not found 4–16 d post-treatment. Flunixin was either not seen or found less than LOQ in the muscle, with the exception of one sample on Day 16 at a level close to LOQ. Flunixin was found in the urine of untreated pigs after commingled housing with FM-treated pigs. The PBPK model adequately correlated plasma, oral fluid and urine concentrations of flunixin with residue depletion profiles in liver, kidney, and muscle of finishing-age pigs, especially within 24 h after dosing. Conclusions Results indicate untreated pigs can be exposed to flunixin by shared housing with FM-treated pigs due to environmental contamination. Plasma and urine samples may serve as less invasive and more easily accessible biological matrices to predict tissue residue statuses of flunixin in pigs at earlier time points (≤24 h) by using a PBPK model.
Collapse
Affiliation(s)
- Jessica L Bates
- Swine Medicine Education Center, Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| | - Locke A Karriker
- Swine Medicine Education Center, Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| | - Suzanne M Rajewski
- Analytical Chemistry Services, Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, P200 Mosier Hall, Manhattan, KS, 66506, USA.
| | - Ronette Gehring
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, P200 Mosier Hall, Manhattan, KS, 66506, USA.,Present Address: Ronette Gehring, Institute for Risk Assessment Sciences, Division of Toxicology and Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Mengjie Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, P200 Mosier Hall, Manhattan, KS, 66506, USA.,Present Address: Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, P200 Mosier Hall, Manhattan, KS, 66506, USA
| | - Johann F Coetzee
- Analytical Chemistry Services, Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA.,Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, P200 Mosier Hall, Manhattan, KS, 66506, USA
| |
Collapse
|
12
|
Popova IE, Morra MJ. Fate of the nonsteroidal, anti-inflammatory veterinary drug flunixin in agricultural soils and dairy manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19746-19753. [PMID: 32221835 DOI: 10.1007/s11356-020-08438-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
A large percentage of flunixin, a nonsteroidal anti-inflammatory drug widely used for treating livestock, is excreted in intact form and thus potentially available for environmental transport. As the fate of flunixin in the environment is unknown, our objective was to quantify sorption, desorption, and transformation in five agricultural soils and manure using batch equilibrium methods. Concentrations of flunixin and degradation products were determined by high performance liquid chromatography time of flight mass spectrometry. For all studied soils, sorption of flunixin exhibited linear character, with both linear and Freundlich models providing adequate fit. Linear sorption coefficients varied from 8 to 112 L kg-1. The strongest Pearson correlations with sorption coefficients were for clay content (r = 0.8693), total nitrogen (r = 0.7998), and organic carbon (r = 0.6291). Desorption of the reversibly bound fraction (3-10% of total sorbed flunixin) from all five studied soils exhibited non-hysteretic character suggesting low affinity of this fraction of flunixin to soil. Flunixin degradation in soils was relatively slow, exhibiting half-lives of 39-203 days, thus providing time for off-site transport and environmental contamination. The biological impacts of flunixin at environmentally relevant concentrations must be determined given its environmental behavior and extensive use as a nonsteroidal anti-inflammatory drug in livestock. Graphical abstract.
Collapse
Affiliation(s)
- Inna E Popova
- Department of Soil & Water Systems, University of Idaho, 875 Perimeter Drive MS 2340, Moscow, ID, 83844-2340, USA.
| | - Matthew J Morra
- Department of Soil & Water Systems, University of Idaho, 875 Perimeter Drive MS 2340, Moscow, ID, 83844-2340, USA
| |
Collapse
|
13
|
Lin Z, Li M, Wang YS, Tell LA, Baynes RE, Davis JL, Vickroy TW, Riviere JE. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part I: Cattle and swine. J Vet Pharmacol Ther 2020; 43:385-420. [PMID: 32270548 PMCID: PMC7540321 DOI: 10.1111/jvp.12861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models for chemicals in food animals are a useful tool in estimating chemical tissue residues and withdrawal intervals. Physiological parameters such as organ weights and blood flows are an important component of a PBPK model. The objective of this study was to compile PBPK‐related physiological parameter data in food animals, including cattle and swine. Comprehensive literature searches were performed in PubMed, Google Scholar, ScienceDirect, and ProQuest. Relevant literature was reviewed and tables of relevant parameters such as relative organ weights (% of body weight) and relative blood flows (% of cardiac output) were compiled for different production classes of cattle and swine. The mean and standard deviation of each parameter were calculated to characterize their variability and uncertainty and to allow investigators to conduct population PBPK analysis via Monte Carlo simulations. Regression equations using weight or age were created for parameters having sufficient data. These compiled data provide a comprehensive physiological parameter database for developing PBPK models of chemicals in cattle and swine to support animal‐derived food safety assessment. This work also provides a basis to compile data in other food animal species, including goats, sheep, chickens, and turkeys.
Collapse
Affiliation(s)
- Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Yu-Shin Wang
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Ronald E Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jennifer L Davis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia
| | - Thomas W Vickroy
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
14
|
A physiologically based pharmacokinetic model of doxycycline for predicting tissue residues and withdrawal intervals in grass carp (Ctenopharyngodon idella). Food Chem Toxicol 2020; 137:111127. [PMID: 31945393 DOI: 10.1016/j.fct.2020.111127] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 01/09/2020] [Indexed: 01/18/2023]
Abstract
The extensive use of doxycycline in aquaculture results in drug residue violations that negatively impact human food safety. This study aimed to develop a physiologically based pharmacokinetic (PBPK) model for doxycycline to predict drug residues and withdrawal times (WTs) in grass carp (Ctenopharyngodon idella) after daily oral administration for 3 days. Physiological parameters including cardiac output and organ weights were measured experimentally. Chemical-specific parameters were obtained from the literature or estimated by fitting to the observed data. The model properly captured the observed kinetic profiles of doxycycline in tissues (i.e., liver, kidney, muscle + skin and gill). The predicted WT in muscle + skin by Monte Carlo analysis based on sensitive parameters identified at 24 h after drug administration was 41 d, which was similar to 43 d calculated using the tolerance limit method. Sensitivity analysis identified two additional sensitive parameters at 6 weeks: intestinal transit rate constant and urinary elimination rate constant. The predicted WT in muscle + skin based on sensitive parameters identified at 6 weeks was 54 d. This model provides a useful tool to estimate tissue residues and withdrawal times for doxycycline in grass carp and also serves a foundation for extrapolation to other fish species and other tetracyclines.
Collapse
|
15
|
Lautz L, Oldenkamp R, Dorne J, Ragas A. Physiologically based kinetic models for farm animals: Critical review of published models and future perspectives for their use in chemical risk assessment. Toxicol In Vitro 2019; 60:61-70. [DOI: 10.1016/j.tiv.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
|
16
|
Integration of Food Animal Residue Avoidance Databank (FARAD) empirical methods for drug withdrawal interval determination with a mechanistic population-based interactive physiologically based pharmacokinetic (iPBPK) modeling platform: example for flunixin meglumine administration. Arch Toxicol 2019; 93:1865-1880. [PMID: 31025081 DOI: 10.1007/s00204-019-02464-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
Abstract
Violative chemical residues in animal-derived food products affect food safety globally and have impact on the trade of international agricultural products. The Food Animal Residue Avoidance Databank program has been developing scientific tools to provide appropriate withdrawal interval (WDI) estimations after extralabel drug use in food animals for the past three decades. One of the tools is physiologically based pharmacokinetic (PBPK) modeling, which is a mechanistic-based approach that can be used to predict tissue residues and WDIs. However, PBPK models are complicated and difficult to use by non-modelers. Therefore, a user-friendly PBPK modeling framework is needed to move this field forward. Flunixin was one of the top five violative drug residues identified in the United States from 2010 to 2016. The objective of this study was to establish a web-based user-friendly framework for the development of new PBPK models for drugs administered to food animals. Specifically, a new PBPK model for both cattle and swine after administration of flunixin meglumine was developed. Population analysis using Monte Carlo simulations was incorporated into the model to predict WDIs following extralabel administration of flunixin meglumine. The population PBPK model was converted to a web-based interactive PBPK (iPBPK) framework to facilitate its application. This iPBPK framework serves as a proof-of-concept for further improvements in the future and it can be applied to develop new models for other drugs in other food animal species, thereby facilitating the application of PBPK modeling in WDI estimation and food safety assessment.
Collapse
|
17
|
Yang F, Lin Z, Riviere JE, Baynes RE. Development and application of a population physiologically based pharmacokinetic model for florfenicol and its metabolite florfenicol amine in cattle. Food Chem Toxicol 2019; 126:285-294. [DOI: 10.1016/j.fct.2019.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/17/2022]
|
18
|
Hill DN, Popova IE, Hammel JE, Morra MJ. Transport of Potential Manure Hormone and Pharmaceutical Contaminants through Intact Soil Columns. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:47-56. [PMID: 30640354 DOI: 10.2134/jeq2018.06.0233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although adding manure to agricultural soils is a commonly practiced disposal method and a means to enhance soil productivity, potential environmental contamination by any associated chemicals of emerging concern (CECs) such as hormones and pharmaceuticals is not well understood. Our objective was to provide field-relevant predictions of soil transport and attenuation of 19 potential manure CECs using undisturbed soil columns irrigated under unsaturated conditions. The CEC concentrations in leached water were monitored for 13 wk using high performance liquid chromatography-time of flight-mass spectrometry (HPLC-TOF-MS), after which time soil in the cores was removed and sampled for extractable CECs. Compounds quantified in column leachate included all four of the added sulfonamide antibiotics and the nonsteroidal, anti-inflammatory drug flunixin. Only trace amounts of several of the seven hormones, five remaining antibiotics, and two antimicrobials leached from the columns from exogenous soil additions. Soil residues of all 19 compounds were detected, with highest extractable amounts for 17α-hydroxyprogesterone > triclosan (antimicrobial) > flunixin > oxytetracycline. Those CECs with the highest recoveries as calculated by summing leached and extractable amounts were flunixin (14.5%), 17α-hydroxyprogesterone (5.3%), triclosan (4.6%), and sulfadimethoxine (4.8%). Manure management to prevent CEC contamination should consider the potential environmental problems caused by negatively charged compounds with the greatest mobility (flunixin and sulfadimethoxine) and those that have long residence times in soil (triclosan, 17α-hydroxyprogesterone, flunixin, and oxytetracycline). Flunixin is particularly important given its mobility and long residence time in soil.
Collapse
|
19
|
Clark RD. Predicting mammalian metabolism and toxicity of pesticides in silico. PEST MANAGEMENT SCIENCE 2018; 74:1992-2003. [PMID: 29762898 PMCID: PMC6099302 DOI: 10.1002/ps.4935] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 05/05/2023]
Abstract
Pesticides must be effective to be commercially viable but they must also be reasonably safe for those who manufacture them, apply them, or consume the food they are used to produce. Animal testing is key to ensuring safety, but it comes late in the agrochemical development process, is expensive, and requires relatively large amounts of material. Surrogate assays used as in vitro models require less material and shift identification of potential mammalian toxicity back to earlier stages in development. Modern in silico methods are cost-effective complements to such in vitro models that make it possible to predict mammalian metabolism, toxicity and exposure for a pesticide, crop residue or other metabolite before it has been synthesized. Their broader use could substantially reduce the amount of time and effort wasted in pesticide development. This contribution reviews the kind of in silico models that are currently available for vetting ideas about what to synthesize and how to focus development efforts; the limitations of those models; and the practical considerations that have slowed development in the area. Detailed discussions are provided of how bacterial mutagenicity, human cytochrome P450 (CYP) metabolism, and bioavailability in humans and rats can be predicted. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
|
20
|
Bon C, Toutain PL, Concordet D, Gehring R, Martin-Jimenez T, Smith J, Pelligand L, Martinez M, Whittem T, Riviere JE, Mochel JP. Mathematical modeling and simulation in animal health. Part III: Using nonlinear mixed-effects to characterize and quantify variability in drug pharmacokinetics. J Vet Pharmacol Ther 2018; 41:171-183. [PMID: 29226975 DOI: 10.1111/jvp.12473] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/16/2017] [Indexed: 01/12/2023]
Abstract
A common feature of human and veterinary pharmacokinetics is the importance of identifying and quantifying the key determinants of between-patient variability in drug disposition and effects. Some of these attributes are already well known to the field of human pharmacology such as bodyweight, age, or sex, while others are more specific to veterinary medicine, such as species, breed, and social behavior. Identification of these attributes has the potential to allow a better and more tailored use of therapeutic drugs both in companion and food-producing animals. Nonlinear mixed effects (NLME) have been purposely designed to characterize the sources of variability in drug disposition and response. The NLME approach can be used to explore the impact of population-associated variables on the relationship between drug administration, systemic exposure, and the levels of drug residues in tissues. The latter, while different from the method used by the US Food and Drug Administration for setting official withdrawal times (WT) can also be beneficial for estimating WT of approved animal drug products when used in an extralabel manner. Finally, NLME can also prove useful to optimize dosing schedules, or to analyze sparse data collected in situations where intensive blood collection is technically challenging, as in small animal species presenting limited blood volume such as poultry and fish.
Collapse
Affiliation(s)
- C Bon
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - P L Toutain
- Department of Veterinary Basic Sciences, Royal Veterinary College, Hatfield, UK
| | - D Concordet
- Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, ENVT, INP, Toxalim, Toulouse, France
- Laboratoire de Physiologie et Thérapeutique, École Nationale Vétérinaire de Toulouse INRA, UMR 1331, Toulouse, France
| | - R Gehring
- Department of Anatomy and Physiology, College of Veterinary Medicine, Institute of Computational Comparative Medicine (ICCM), Kansas State University, Manhattan, KS, USA
| | - T Martin-Jimenez
- Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - J Smith
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - L Pelligand
- Department of Veterinary Basic Sciences, Royal Veterinary College, Hatfield, UK
| | - M Martinez
- Center for Veterinary Medicine, US Food and Drug Administration, Rockville, MD, USA
| | - T Whittem
- Translational Research and Animal Clinical Trials (TRACTs) Group, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic., Australia
| | - J E Riviere
- Department of Anatomy and Physiology, College of Veterinary Medicine, Institute of Computational Comparative Medicine (ICCM), Kansas State University, Manhattan, KS, USA
| | - J P Mochel
- Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| |
Collapse
|
21
|
Li M, Gehring R, Riviere JE, Lin Z. Probabilistic Physiologically Based Pharmacokinetic Model for Penicillin G in Milk From Dairy Cows Following Intramammary or Intramuscular Administrations. Toxicol Sci 2018; 164:85-100. [DOI: 10.1093/toxsci/kfy067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Ronette Gehring
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
22
|
Li M, Gehring R, Riviere JE, Lin Z. Development and application of a population physiologically based pharmacokinetic model for penicillin G in swine and cattle for food safety assessment. Food Chem Toxicol 2017. [DOI: 10.1016/j.fct.2017.06.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Sidhu PK, Gehring R, Mzyk DA, Marmulak T, Tell LA, Baynes RE, Vickroy TW, Riviere JE. Avoiding violative flunixin meglumine residues in cattle and swine. J Am Vet Med Assoc 2017; 250:182-189. [PMID: 28058945 DOI: 10.2460/javma.250.2.182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Riviere JE, Tell LA, Baynes RE, Vickroy TW, Gehring R. Guide to FARAD resources: historical and future perspectives. J Am Vet Med Assoc 2017; 250:1131-1139. [DOI: 10.2460/javma.250.10.1131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Zhu X, Huang L, Xu Y, Xie S, Pan Y, Chen D, Liu Z, Yuan Z. Physiologically based pharmacokinetic model for quinocetone in pigs and extrapolation to mequindox. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 34:192-210. [PMID: 28001497 DOI: 10.1080/19440049.2016.1258121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Lin Z, Cuneo M, Rowe JD, Li M, Tell LA, Allison S, Carlson J, Riviere JE, Gehring R. Estimation of tulathromycin depletion in plasma and milk after subcutaneous injection in lactating goats using a nonlinear mixed-effects pharmacokinetic modeling approach. BMC Vet Res 2016; 12:258. [PMID: 27863483 PMCID: PMC5116175 DOI: 10.1186/s12917-016-0884-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extra-label use of tulathromycin in lactating goats is common and may cause violative residues in milk. The objective of this study was to develop a nonlinear mixed-effects pharmacokinetic (NLME-PK) model to estimate tulathromycin depletion in plasma and milk of lactating goats. Eight lactating goats received two subcutaneous injections of 2.5 mg/kg tulathromycin 7 days apart; blood and milk samples were analyzed for concentrations of tulathromycin and the common fragment of tulathromycin (i.e., the marker residue CP-60,300), respectively, using liquid chromatography mass spectrometry. Based on these new data and related literature data, a NLME-PK compartmental model with first-order absorption and elimination was used to model plasma concentrations and cumulative excreted amount in milk. Monte Carlo simulations with 100 replicates were performed to predict the time when the upper limit of the 95% confidence interval of milk concentrations was below the tolerance. RESULTS All animals were healthy throughout the study with normal appetite and milk production levels, and with mild-moderate injection-site reactions that diminished by the end of the study. The measured data showed that milk concentrations of the marker residue of tulathromycin were below the limit of detection (LOD = 1.8 ng/ml) 39 days after the second injection. A 2-compartment model with milk as an excretory compartment best described tulathromycin plasma and CP-60,300 milk pharmacokinetic data. The model-predicted data correlated with the measured data very well. The NLME-PK model estimated that tulathromycin plasma concentrations were below LOD (1.2 ng/ml) 43 days after a single injection, and 62 days after the second injection with a 95% confidence. These estimated times are much longer than the current meat withdrawal time recommendation of 18 days for tulathromycin in non-lactating cattle. CONCLUSIONS The results suggest that twice subcutaneous injections of 2.5 mg/kg tulathromycin are a clinically safe extra-label alternative approach for treating pulmonary infections in lactating goats, but a prolonged withdrawal time of at least 39 days after the second injection should be considered to prevent violative residues in milk and any dairy goat being used for meat should have an extended meat withdrawal time.
Collapse
Affiliation(s)
- Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, P200 Mosier Hall, Manhattan, KS, 66506-5802, USA
| | - Matthew Cuneo
- Department of Population, Health and Reproduction, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Joan D Rowe
- Department of Population, Health and Reproduction, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Mengjie Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, P200 Mosier Hall, Manhattan, KS, 66506-5802, USA.,Present address: Department of Pharmaceutical Science, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Lisa A Tell
- Department of Medicine and Epidemiology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Shayna Allison
- School of Veterinary Medicine, and Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Jan Carlson
- School of Veterinary Medicine, and Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, P200 Mosier Hall, Manhattan, KS, 66506-5802, USA
| | - Ronette Gehring
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, P200 Mosier Hall, Manhattan, KS, 66506-5802, USA.
| |
Collapse
|
27
|
Lin Z, Vahl CI, Riviere JE. Human Food Safety Implications of Variation in Food Animal Drug Metabolism. Sci Rep 2016; 6:27907. [PMID: 27302389 PMCID: PMC4908408 DOI: 10.1038/srep27907] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/26/2016] [Indexed: 01/03/2023] Open
Abstract
Violative drug residues in animal-derived foods are a global food safety concern. The use of a fixed main metabolite to parent drug (M/D) ratio determined in healthy animals to establish drug tolerances and withdrawal times in diseased animals results in frequent residue violations in food-producing animals. We created a general physiologically based pharmacokinetic model for representative drugs (ceftiofur, enrofloxacin, flunixin, and sulfamethazine) in cattle and swine based on extensive published literature. Simulation results showed that the M/D ratio was not a fixed value, but a time-dependent range. Disease changed M/D ratios substantially and extended withdrawal times; these effects exhibited drug- and species-specificity. These results challenge the interpretation of violative residues based on the use of the M/D ratio to establish tolerances for metabolized drugs.
Collapse
Affiliation(s)
- Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Christopher I. Vahl
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Jim E. Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
28
|
Lin Z, Gehring R, Mochel JP, Lavé T, Riviere JE. Mathematical modeling and simulation in animal health – Part
II
: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment. J Vet Pharmacol Ther 2016; 39:421-38. [DOI: 10.1111/jvp.12311] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/21/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Z. Lin
- Institute of Computational Comparative Medicine (ICCM) Department of Anatomy and Physiology College of Veterinary Medicine Kansas State University Manhattan KS USA
| | - R. Gehring
- Institute of Computational Comparative Medicine (ICCM) Department of Anatomy and Physiology College of Veterinary Medicine Kansas State University Manhattan KS USA
| | - J. P. Mochel
- Roche Pharmaceutical Research and Early Development Roche Innovation Center Basel Switzerland
| | - T. Lavé
- Roche Pharmaceutical Research and Early Development Roche Innovation Center Basel Switzerland
| | - J. E. Riviere
- Institute of Computational Comparative Medicine (ICCM) Department of Anatomy and Physiology College of Veterinary Medicine Kansas State University Manhattan KS USA
| |
Collapse
|
29
|
Huang L, Lin Z, Zhou X, Zhu M, Gehring R, Riviere JE, Yuan Z. Estimation of residue depletion of cyadox and its marker residue in edible tissues of pigs using physiologically based pharmacokinetic modelling. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:2002-17. [PMID: 26414219 DOI: 10.1080/19440049.2015.1100330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) models are powerful tools to predict tissue distribution and depletion of veterinary drugs in food animals. However, most models only simulate the pharmacokinetics of the parent drug without considering their metabolites. In this study, a PBPK model was developed to simultaneously describe the depletion in pigs of the food animal antimicrobial agent cyadox (CYA), and its marker residue 1,4-bisdesoxycyadox (BDCYA). The CYA and BDCYA sub-models included blood, liver, kidney, gastrointestinal tract, muscle, fat and other organ compartments. Extent of plasma-protein binding, renal clearance and tissue-plasma partition coefficients of BDCYA were measured experimentally. The model was calibrated with the reported pharmacokinetic and residue depletion data from pigs dosed by oral gavage with CYA for five consecutive days, and then extrapolated to exposure in feed for two months. The model was validated with 14 consecutive day feed administration data. This PBPK model accurately simulated CYA and BDCYA in four edible tissues at 24-120 h after both oral exposure and 2-month feed administration. There was only slight overestimation of CYA in muscle and BDCYA in kidney at earlier time points (6-12 h) when dosed in feed. Monte Carlo analysis revealed excellent agreement between the estimated concentration distributions and observed data. The present model could be used for tissue residue monitoring of CYA and BDCYA in food animals, and provides a foundation for developing PBPK models to predict residue depletion of both parent drugs and their metabolites in food animals.
Collapse
Affiliation(s)
- Lingli Huang
- a MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , 430070 , China.,b Institute of Computational Comparative Medicine (ICCM), College of Veterinary Medicine , Kansas State University , Manhattan , KS 66506 , USA.,c Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Huazhong Agricultural University , Wuhan , 430070 , China
| | - Zhoumeng Lin
- d National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University , Wuhan , 430070 , China
| | - Xuan Zhou
- d National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University , Wuhan , 430070 , China
| | - Meiling Zhu
- d National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University , Wuhan , 430070 , China
| | - Ronette Gehring
- b Institute of Computational Comparative Medicine (ICCM), College of Veterinary Medicine , Kansas State University , Manhattan , KS 66506 , USA
| | - Jim E Riviere
- b Institute of Computational Comparative Medicine (ICCM), College of Veterinary Medicine , Kansas State University , Manhattan , KS 66506 , USA
| | - Zonghui Yuan
- a MOA Laboratory of Risk Assessment for Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , 430070 , China.,c Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Huazhong Agricultural University , Wuhan , 430070 , China.,d National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University , Wuhan , 430070 , China
| |
Collapse
|
30
|
Lin Z, Monteiro-Riviere NA, Riviere JE. A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice. Nanotoxicology 2015; 10:162-72. [PMID: 25961857 DOI: 10.3109/17435390.2015.1027314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanoparticles (NPs) are widely used in various fields of nanomedicine. A systematic understanding of NP pharmacokinetics is crucial in their design, applications, and risk assessment. In order to integrate available experimental information and to gain insights into NP pharmacokinetics, a membrane-limited physiologically based pharmacokinetic (PBPK) model for polyethylene glycol-coated gold (Au) NPs (PEG-coated AuNPs) was developed in mice. The model described endocytosis of the NPs in the liver, spleen, kidneys, and lungs and was calibrated using data from mice that were intravenously injected with 0.85 mg/kg 13 nm and 100 nm PEG-coated AuNPs. The model adequately predicted multiple external datasets for PEG-coated AuNPs of similar sizes (13-20 nm; 80-100 nm), indicating reliable predictive capability in suitable size ranges. Simulation results suggest that endocytosis of NPs is time and size dependent, i.e. endocytosis of larger NPs occurs immediately and predominately from the blood, whereas smaller NPs can diffuse through the capillary wall and their endocytosis appears mainly from the tissue with a 10-h delay, which may be the primary mechanism responsible for the reported size-dependent pharmacokinetics of NPs. Several physiological parameters (e.g. liver weight fraction of body weight) were identified to have a high influence on selected key dose metrics, indicating the need for additional interspecies comparison and scaling studies and to conduct pharmacokinetic studies of NPs in species that are more closely related to humans in these parameters. This PBPK model provides useful insights into the size, time, and species dependence of NP pharmacokinetics.
Collapse
Affiliation(s)
- Zhoumeng Lin
- a Institute of Computational Comparative Medicine (ICCM), College of Veterinary Medicine, Kansas State University , Manhattan , KS , USA and
| | - Nancy A Monteiro-Riviere
- b Nanotechnology Innovation Center of Kansas State (NICKS), College of Veterinary Medicine, Kansas State University , Manhattan , KS , USA
| | - Jim E Riviere
- a Institute of Computational Comparative Medicine (ICCM), College of Veterinary Medicine, Kansas State University , Manhattan , KS , USA and
| |
Collapse
|
31
|
Li M, Gehring R, Lin Z, Riviere J. A framework for meta-analysis of veterinary drug pharmacokinetic data using mixed effect modeling. J Pharm Sci 2015; 104:1230-9. [PMID: 25641543 DOI: 10.1002/jps.24341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/27/2022]
Abstract
Combining data from available studies is a useful approach to interpret the overwhelming amount of data generated in medical research from multiple studies. Paradoxically, in veterinary medicine, lack of data requires integrating available data to make meaningful population inferences. Nonlinear mixed-effects modeling is a useful tool to apply meta-analysis to diverse pharmacokinetic (PK) studies of veterinary drugs. This review provides a summary of the characteristics of PK data of veterinary drugs and how integration of these data may differ from human PK studies. The limits of meta-analysis include the sophistication of data mining, and generation of misleading results caused by biased or poor quality data. The overriding strength of meta-analysis applied to this field is that robust statistical analysis of the diverse sparse data sets inherent to veterinary medicine applications can be accomplished, thereby allowing population inferences to be made.
Collapse
Affiliation(s)
- Mengjie Li
- Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | | | | | | |
Collapse
|
32
|
Lin Z, Li M, Gehring R, Riviere JE. Development and application of a multiroute physiologically based pharmacokinetic model for oxytetracycline in dogs and humans. J Pharm Sci 2014; 104:233-43. [PMID: 25407474 DOI: 10.1002/jps.24244] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/15/2023]
Abstract
Oxytetracycline (OTC) is a commonly used tetracycline antibiotic in veterinary and human medicine. To establish a quantitative model for predicting OTC plasma and tissue exposure, a permeability-limited multiroute physiologically based pharmacokinetic model was developed in dogs. The model was calibrated with plasma pharmacokinetic data in beagle dogs following single intravenous (5 mg/kg), oral (100 mg/kg), and intramuscular (20 mg/kg) administrations. The model predicted other available dog data well, including drug concentrations in the liver, kidney, and muscle after repeated exposure, and data in the mixed-breed dog. The model was extrapolated to humans and the human model adequately simulated measured plasma OTC concentrations after intravenous (7.14 mg/kg) and oral exposures (6.67 mg/kg). The dog model was applied to predict 24-h OTC area-under-the-curve after three therapeutic treatments. Results were 27.75, 51.76, and 64.17 μg/mL*h in the plasma, and 120.93, 225.64, and 279.67 μg/mL*h in the kidney for oral (100 mg/kg), intravenous (10 mg/kg), and intramuscular (20 mg/kg) administrations, respectively. This model can be used to predict plasma and tissue concentrations to aid in designing optimal therapeutic regimens with OTC in veterinary, and potentially, human medicine; and as a foundation for scaling to other tetracycline antibiotics and to other animal species. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:233-243, 2015.
Collapse
Affiliation(s)
- Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM) and The Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, 66506
| | | | | | | |
Collapse
|