1
|
Peloso M, Minkoumba Sonfack G, Prizio I, Baraldini Molgora E, Pedretti G, Fedrizzi G, Caprai E. Climate Effects on Ergot and Ergot Alkaloids Occurrence in Italian Wheat. Foods 2024; 13:1907. [PMID: 38928849 PMCID: PMC11202928 DOI: 10.3390/foods13121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, there has been an intensification of weather variability worldwide as a result of climate change. Some regions have been affected by drought, while others have experienced more intense rainfall. The incidence and severity of moldy grain and mycotoxin contamination during the growing and harvesting seasons have increased as a result of these weather conditions. Additionally, torrential rains and wet conditions may cause delays in grain drying, leading to mold growth in the field. In July 2023, a wheat field in Lecco (Lombardy, Italy) was affected by torrential rains that led to the development of the Claviceps fungi. In the field, dark sclerotia were identified on some ears. Wheat ears, kernels, and sclerotia were collected and analyzed by LC-MS/MS at IZSLER, Food Chemical Department, in Bologna. The wheat ears, kernels, and sclerotia were analyzed for 12 ergot alkaloids (EAs) according to (EU) Regulation 2023/915 (ergocornine/ergocorninine; ergocristine/ergocristinine; ergocryptine/ergocryptinine; ergometrine/ergometrinine; ergosine/ergosinine; ergotamine/ergotaminine), after QuEChERS (Z-Sep/C18) purification. The analyzed sclerotia showed significant differences in total alkaloid content that vary between 0.01 and 0.5% (w/w), according to the results of the 2017 EFSA scientific report. EAs detected in sclerotia were up to 4951 mg/kg, in wheat ears up to 33 mg/kg, and in kernels were 1 mg/kg. Additional mycotoxins, including ochratoxin A, deoxynivalenol, zearalenone, fumonisins, T2-HT2 toxins, and aflatoxins, were investigated in wheat kernels after purification with immunoaffinity columns (IAC). The analysis revealed the presence of deoxynivalenol in wheat kernels at a concentration of 2251 µg/kg. It is expected that climate change will increase the frequency of extreme weather events. In order to mitigate the potential risks associated with mycotoxin-producing fungi and to ensure the protection of human health, it is suggested that official controls be implemented in the field.
Collapse
Affiliation(s)
- Mariantonietta Peloso
- Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Fiorini 5, 40127 Bologna, Italy; (M.P.); (G.M.S.); (I.P.); (E.B.M.); (G.F.)
| | - Gaetan Minkoumba Sonfack
- Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Fiorini 5, 40127 Bologna, Italy; (M.P.); (G.M.S.); (I.P.); (E.B.M.); (G.F.)
| | - Ilaria Prizio
- Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Fiorini 5, 40127 Bologna, Italy; (M.P.); (G.M.S.); (I.P.); (E.B.M.); (G.F.)
| | - Eleonora Baraldini Molgora
- Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Fiorini 5, 40127 Bologna, Italy; (M.P.); (G.M.S.); (I.P.); (E.B.M.); (G.F.)
| | | | - Giorgio Fedrizzi
- Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Fiorini 5, 40127 Bologna, Italy; (M.P.); (G.M.S.); (I.P.); (E.B.M.); (G.F.)
| | - Elisabetta Caprai
- Food Chemical Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Fiorini 5, 40127 Bologna, Italy; (M.P.); (G.M.S.); (I.P.); (E.B.M.); (G.F.)
| |
Collapse
|
2
|
Undertaking a New Regulatory Challenge: Monitoring of Ergot Alkaloids in Italian Food Commodities. Toxins (Basel) 2021; 13:toxins13120871. [PMID: 34941709 PMCID: PMC8708126 DOI: 10.3390/toxins13120871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The present manuscript reports on monitoring data of 12 ergot alkaloids (EAs) in cereal and cereal-derived products, collected in Italy over the period 2017-2020, for official control purposes under the edge of the Commission Recommendation 2012/154/EU on the monitoring of the presence of EAs in feed and food. To these purposes, an LC-MS/MS method was set up and applied, after in-house verification of its analytical performance. Besides satisfactory recoveries and precision, the method's quantification limits proved suitable to assess the compliance of cereals and cereal-based foods with the recently issued EU maximum permitted levels (Commission Regulation 2021/1399/EU). The validity of the generated data was also evaluated through the adoption of four proficiency tests, from which acceptable z-score values (-2 ≤ z ≤ 2) were obtained. The method was then applied to analyse a total of 67 samples, collected in Italy over the period 2017-2020. The samples consisted of 18 cereal grains, 16 flours (14 of wheat and 2 of spelt) and 31 other types of cereals derivatives (including 9 for infants). Overall, the EAs analysis returned a high percentage of left-censored data (>86%). Among the positive samples, the highest contamination levels, up to 94.2 µg/kg, were found for ergocristine (12% incidence), followed by ergocristinine (7% incidence) with levels of up to 48.3 µg/kg.
Collapse
|
3
|
Ergot and Ergot Alkaloids in Cereal Grains Intended for Animal Feeding Collected in Slovenia: Occurrence, Pattern and Correlations. Toxins (Basel) 2020; 12:toxins12110730. [PMID: 33233446 PMCID: PMC7700445 DOI: 10.3390/toxins12110730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Abstract
This four-year study reports the occurrence of ergot alkaloids (EAs) in cereals intended for animal feeding collected in Slovenia. A total of 517 samples of cereals were analysed using liquid chromatography-tandem mass spectrometry for the presence of EAs. The sample set included wheat, rye, triticale, oat, spelt and barley. The study revealed that 17% of the analysed cereal samples were contaminated with at least one ergot alkaloid. EAs have two epimeric forms: -ine and -inine. The incidence rates of the -ine and -inine forms in the analysed samples were 16% and 15%, respectively. The highest contamination rates were observed in rye (54%), oat (50%) and spelt (30%), where the highest mean concentrations of total EAs were also determined (502 µg/kg, 594 µg/kg and 715 µg/kg, respectively). However, the highest concentrations of total EAs were found in wheat and rye (4217 µg/kg and 4114 µg/kg, respectively). The predominant EAs were ergometrine, ergosine and ergocristinine. The occurrence of six or more ergot alkaloids was observed in 49% of the positive samples. A weak correlation (p = 0.284) in the positive samples was found between the mass of sclerotia and the total concentrations of EAs using the Spearman correlation coefficient.
Collapse
|
4
|
Covariation of Ergot Severity and Alkaloid Content Measured by HPLC and One ELISA Method in Inoculated Winter Rye across Three Isolates and Three European Countries. Toxins (Basel) 2020; 12:toxins12110676. [PMID: 33114663 PMCID: PMC7692364 DOI: 10.3390/toxins12110676] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Ergot caused by Claviceps purpurea is a problem for food and feed security in rye due to the occurrence of toxic ergot alkaloids (EAs). For grain elevators and breeders, a quick, easy-to-handle, and cheap screening assay would have a high economic impact. The study was performed to reveal (1) the covariation of ergot severity (= percentage of sclerotia in harvested grain) and the content of 12 EAs determined by high performance liquid chromatography (HPLC) and (2) the covariation between these traits and results of one commercial enzyme linked immunosorbent assays (ELISA). In total, 372 winter rye samples consisting of a diverse set of genotypes, locations from Germany, Austria, and Poland over two years, and three isolates were analyzed. Ergocornine and α-ergocryptine were detected as major EAs. Ergocristinine occurred as a minor component. Claviceps isolates from different countries showed a similar EA spectrum, but different quantities of individual EAs. A moderate, positive covariation between ergot severity and EA content determined by HPLC was observed across two years (r = 0.53, p < 0.01), but large deviation from the regression was detected. ELISA values did neither correlate with the HPLC results nor with ergot severity. In conclusion, a reliable prediction of the EA content based on ergot severity is, at present, not possible.
Collapse
|
5
|
Zhang X, Li G, Wu D, Liu J, Wu Y. Recent advances on emerging nanomaterials for controlling the mycotoxin contamination: From detection to elimination. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.42] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an China
| | - Guoliang Li
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences Queen's University Belfast Belfast United Kingdom
| | - Jianghua Liu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science China National Center for Food Safety Risk Assessment Beijing China
| |
Collapse
|
6
|
Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020; 9:E137. [PMID: 32012820 PMCID: PMC7074356 DOI: 10.3390/foods9020137] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are toxic substances that can infect many foods with carcinogenic, genotoxic, teratogenic, nephrotoxic, and hepatotoxic effects. Mycotoxin contamination of foodstuffs causes diseases worldwide. The major classes of mycotoxins that are of the greatest agroeconomic importance are aflatoxins, ochratoxins, fumonisins, trichothecenes, emerging Fusarium mycotoxins, enniatins, ergot alkaloids, Alternaria toxins, and patulin. Thus, in order to mitigate mycotoxin contamination of foods, many control approaches are used. Prevention, detoxification, and decontamination of mycotoxins can contribute in this purpose in the pre-harvest and post-harvest stages. Therefore, the purpose of the review is to elaborate on the recent advances regarding the occurrence of main mycotoxins in many types of important agricultural products, as well as the methods of inactivation and detoxification of foods from mycotoxins in order to reduce or fully eliminate them.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.S.); (T.V.)
| | | | | |
Collapse
|
7
|
Eskola M, Kos G, Elliott CT, Hajšlová J, Mayar S, Krska R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit Rev Food Sci Nutr 2019; 60:2773-2789. [DOI: 10.1080/10408398.2019.1658570] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mari Eskola
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Gregor Kos
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada
| | - Christopher T. Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, Northern Ireland, UK
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| | - Sultan Mayar
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
8
|
Fate of Ergot Alkaloids during Laboratory Scale Durum Processing and Pasta Production. Toxins (Basel) 2019; 11:toxins11040195. [PMID: 30935118 PMCID: PMC6521069 DOI: 10.3390/toxins11040195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022] Open
Abstract
The fate of ergot alkaloids during the milling of durum and subsequent production and cooking of pasta was examined. Durum samples containing varying amounts of ergot sclerotia (0.01⁻0.1% by mass) were milled, and all milling product was analyzed for 10 ergot alkaloids using liquid chromatography with tandem mass spectrometry. Spaghetti was prepared from the semolina obtained during milling. Ergocristine, ergocristinine, and ergotamine were the predominant ergot alkaloids observed in the milling fractions and spaghetti. Approximately 84% of the total ergot alkaloid mass of the whole grain durum resided in the milling product fractions associated with the outer kernel layers (bran, shorts, feeds). No consistent loss of ergot alkaloids was observed during the production or cooking of spaghetti. However, changes in the ratio of R- to S-enantiomers occurred during the milling and cooking of spaghetti. Products containing bran, shorts, and feeds, as well as cooked spaghetti, contained a higher proportion of the less biologically active S-enantiomers. The results of this study emphasize the need to monitor R- and S-enantiomers, and to consider food and feed products, as opposed to whole grain, when assessing any exposure of consumers to ergot alkaloids.
Collapse
|
9
|
Ergot Alkaloids at Doses Close to EU Regulatory Limits Induce Alterations of the Liver and Intestine. Toxins (Basel) 2018; 10:toxins10050183. [PMID: 29723978 PMCID: PMC5983239 DOI: 10.3390/toxins10050183] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/07/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023] Open
Abstract
An increase in the occurrence of ergot alkaloids (EAs) contamination has been observed in North America and Europe in recent years. These toxins are well known for their effects on the circulatory and nervous systems. The aim of this study was to investigate the effect of EAs on the liver and on the intestine using the pig both as a target species and as a non-rodent model for human. Three groups of 24 weaned piglets were exposed for 28 days to control feed or feed contaminated with 1.2 or 2.5 g of sclerotia/kg, i.e., at doses close to EU regulatory limits. Contaminated diets significantly reduced feed intake and consequently growth performance. In the liver, alteration of the tissue, including development of inflammatory infiltrates, vacuolization, apoptosis and necrosis of hepatocytes as well as presence of enlarged hepatocytes (megalocytes) were observed. In the jejunum, EAs reduced villi height and increased damage to the epithelium, reduced the number of mucus-producing cells and upregulated mRNA coding for different tight junction proteins such as claudins 3 and 4. In conclusion, in term of animal health, our data indicate that feed contaminated at the regulatory limits induces lesions in liver and intestine suggesting that this limit should be lowered for pigs. In term of human health, we establish a lowest observed adverse effect level (LOAEL) of 100 μg/kg body weight (bw) per day, lower than the benchmark dose limit (BMDL) retained by European Food Safety Authority (EFSA) to set the tolerable daily intake, suggesting also that regulatory limit should be revised.
Collapse
|
10
|
Berthiller F, Cramer B, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J, Tittlemier S. Developments in mycotoxin analysis: an update for 2016-2017. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2250] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review summarises developments in the determination of mycotoxins over a period between mid-2016 and mid-2017. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone are covered in individual sections. Advances in proper sampling strategies are discussed in a dedicated section, as are methods used to analyse botanicals and spices and newly developed LC-MS based multi-mycotoxin methods. This critical review aims to briefly discuss the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- F. Berthiller
- Department of Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - B. Cramer
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149 Münster, Germany
| | - M.H. Iha
- Nucleous of Chemistry and Bromatology Science, Adolfo Lutz Institute of Ribeirão Preto, Rua Minas 866, CEP 14085-410, Ribeirão Preto, SP, Brazil
| | - R. Krska
- Department of Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via amendola 122/O, 70126 Bari, Italy
| | - S. MacDonald
- Department of Contaminants and Authenticity, Fera Science Ltd., Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council of Italy, Institute of Sciences of Food Production, via amendola 122/O, 70126 Bari, Italy
| | - M. Stranska-Zachariasova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 – Dejvice, Czech Republic
| | - J. Stroka
- European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| | - S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, MB R3C 3G8, Canada
| |
Collapse
|