1
|
Weng CY, Chang TC, Liou JY, Hsu JH, Ho CC, Arrokhman S, Lin P. Evaluating the embryotoxicity of benzophenone-based photoinitiators in stem cells and zebrafish embryos. Toxicology 2024; 508:153930. [PMID: 39159712 DOI: 10.1016/j.tox.2024.153930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Benzophenones (BPs) are widely used as photoinitiators (PIs) or printing inks in food packaging, which may migrate into foods. However, the toxicity information of some BP analogues, such as 4,4'-bis(diethylamino)-benzophenone (DEAB), 4-phenylbenzophenone (4-PBP), 4 (hydroxymethyl)benzophenone (4-HMBP), those are used as PIs is lacking. Developmental toxicity is a health concern associated with PIs exposure. Recently, alternative non-in vivo methods have been proposed to evaluate the concerned chemicals or better understand the modes of action of certain toxicological endpoints. In this study, using in silico methods, we predicted that BP, DEAB, 4-PBP and 4-HMBP might exhibit developmental toxicity. However, we found that only DEAB is strong embryotoxic and disturbs the early differentiation of mouse embryonic stem cells into three germ layers and cardiomyocytes. DEAB treatment also prevented cardiomyocyte differentiation in human induced pluripotent stem cells (hiPSCs) on day 10. However, BP, 4-PBP and 4-HMBP had no similar effects on cardiomyocyte differentiation on day 10. Transcriptomic analysis revealed that treatment with DEAB significantly decreased the mRNA levels of differentiation-related transcription factors SOX17 and FOXA1, in hiPSCs on day 4. Furthermore, DEAB treatment caused tail malformations and yolk sac edema in zebrafish embryos. To conclude, DEAB may be embryotoxic because it disturbs the early differentiation of stem cells. Further studies are warranted to better understand the health effects of DEAB exposure.
Collapse
Affiliation(s)
- Chen-Yi Weng
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Tzu-Ching Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Ju-Hsin Hsu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Chi Ho
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Salim Arrokhman
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
2
|
Liao W, Jin M. Strategies to develop α-aminoketone derivatives photoinitiators with low migration ability for UV–vis LED photopolymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
3
|
Peng Y, Zhang J, Peng C, Bai F, Hou R, Cai H. Real-time and in situ monitoring of Irgacure 907 penetration into food plastic packaging through surface-enhanced Raman spectroscopy. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Study on bifunctional acyldiphenylphosphine oxides photoinitiator for free radical polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Urbelis JH, Cooper JR. Migration of food contact substances into dry foods: A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1044-1073. [PMID: 33905306 DOI: 10.1080/19440049.2021.1905188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A comprehensive review of the literature was performed on migration of substances from packaging materials into dry foods, specifically those with surfaces containing no free fats or oils. Historically, migration from food packaging to dry foods has been assumed to be minimal. However, several recent publications have reported concentrations of migrants into dry foods that are substantially higher than anticipated. The goal of this review is to provide a comprehensive summary of recent studies that examined migration to dry foods or dry food simulants, observe and assess common migrants, and report the highest migration values. Focusing on the packaging materials and migrants that exhibit the highest migration values, this review divided the studies into two categories: 1) analysis of food products in commercial packaging taken directly from grocery store shelves, and 2) analysis of food products and food simulants in contact with packaging or other material fortified with known quantities of a migrant. Discussions include the examination of migration testing methods, viability of different food simulants, and variables that affect migration behaviour. These include the physicochemical properties of both the migrant and food (i.e. volatility, molecular size, structure, food composition and particle size) and factors pertaining to the packaging material and the environment (i.e. temperature, humidity, and the presence of a secondary barrier). Information gaps and remaining questions are also identified and discussed.
Collapse
Affiliation(s)
- Jessica H Urbelis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration (US FDA), College Park, MD, USA
| | - Jessica R Cooper
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration (US FDA), College Park, MD, USA
| |
Collapse
|
6
|
Blanco-Zubiaguirre L, Zabaleta I, Prieto A, Olivares M, Zuloaga O, Elizalde MP. Migration of photoinitiators, phthalates and plasticizers from paper and cardboard materials into different simulants and foodstuffs. Food Chem 2020; 344:128597. [PMID: 33214042 DOI: 10.1016/j.foodchem.2020.128597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022]
Abstract
The migration of photoinitiators, phthalates and plasticizers from two paper and cardboard materials into food simulants (50% and 95% EtOH and Tenax) and foodstuffs (rice, cereals and milk powder) was studied. In the case of liquid simulants migration was observed to reach the equilibrium after 60 min and depended on the material type and the physicochemical parameters of the migrants, whereas the temperature (room temperature and 60 °C) did not show significant effects. The study of migration of the compounds from a baking paper to Tenax at high temperatures (150 and 250 °C) evidenced an increment of migration when increasing temperature, except for the most volatile analytes. Finally, the migration to foodstuffs was studied using fully validated analytical protocols. Overall, the comparison of the migration rates demonstrated that Tenax was adequate for the simulation of the migration to rice and cereals, but underestimated the migration to infant milk powder, for which 95% EtOH resulted a more suitable simulant.
Collapse
Affiliation(s)
- L Blanco-Zubiaguirre
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - I Zabaleta
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620 Plentzia, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620 Plentzia, Spain
| | - O Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620 Plentzia, Spain
| | - M P Elizalde
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
7
|
Ji S, Zhang J, Peng Y, Sun Y, Peng C, Hou R, Cai H. Migration kinetics of fluorescent whitening agents from polyethylene food packaging to food simulants. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Douziech M, Benítez-López A, Ernstoff A, Askham C, Hendriks AJ, King H, Huijbregts MAJ. A regression-based model to predict chemical migration from packaging to food. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:469-477. [PMID: 31641273 DOI: 10.1038/s41370-019-0185-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/22/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Packaging materials can be a source of chemical contaminants in food. Process-based migration models (PMM) predict the chemical fraction transferred from packaging materials to food (FC) for application in prioritisation tools for human exposure. These models, however, have a relatively limited applicability domain and their predictive performance is typically low. To overcome these limitations, we developed a linear mixed-effects model (LMM) to statistically relate measured FC to properties of chemicals, food, packaging, and experimental conditions. We found a negative relationship between the molecular weight (MW) and FC, and a positive relationship with the fat content of the food depending on the octanol-water partitioning coefficient of the migrant. We also showed that large chemicals (MW > 400 g/mol) have a higher migration potential in packaging with low crystallinity compared with high crystallinity. The predictive performance of the LMM for chemicals not included in the database in contact with untested food items but known packaging material was higher (Coefficient of Efficiency (CoE) = 0.21) compared with a recently developed PMM (CoE = -5.24). We conclude that our empirical model is useful to predict chemical migration from packaging to food and prioritise chemicals in the absence of measurements.
Collapse
Affiliation(s)
- Mélanie Douziech
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| | - Ana Benítez-López
- Estación Biológica de Doñana, Integrative Ecology, Avd. Americo Vespucio s/n, 41001, Sevilla, Spain
| | - Alexi Ernstoff
- Quantis, EPFL Innovation Park-Bâtiment D, 1015, Lausanne, Switzerland
| | | | - A Jan Hendriks
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Henry King
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, MK441LQ, UK
| | - Mark A J Huijbregts
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Interpretation of the migration of benzophenone type photoinitiators into different food simulants and foodstuffs in terms of the physicochemical properties of the migrants. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2019.100444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Li T, Su Z, Xu H, Ma X, Yin J, Jiang X. A supramolecular polymeric photoinitiator with enhanced dispersion in photo-curing systems. Polym Chem 2020. [DOI: 10.1039/c9py01871a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and general approach to make the commercial photoinitiator water-soluble and polymeric was developed via supramolecular interactions, which is believed to find wide potential applications in the photo-curing technology.
Collapse
Affiliation(s)
- Tiantian Li
- School of Chemistry & Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- State Key Laboratory for Metal Matrix Composite Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Zhilong Su
- School of Chemistry & Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- State Key Laboratory for Metal Matrix Composite Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Hongjie Xu
- School of Chemistry & Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- State Key Laboratory for Metal Matrix Composite Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- State Key Laboratory for Metal Matrix Composite Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Jie Yin
- School of Chemistry & Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- State Key Laboratory for Metal Matrix Composite Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- State Key Laboratory for Metal Matrix Composite Materials
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
11
|
Influence of heating source on the migration of photoinitiators from packaging materials into Tenax® and popcorn. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Peters RJ, Groeneveld I, Sanchez PL, Gebbink W, Gersen A, de Nijs M, van Leeuwen SP. Review of analytical approaches for the identification of non-intentionally added substances in paper and board food contact materials. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Nash C, Butzbach D, Stockham P, Scott T, Abroe G, Painter B, Gilbert J, Kostakis C. A Fatality Involving Furanylfentanyl and MMMP, with Presumptive Identification of Three MMMP Metabolites in Urine. J Anal Toxicol 2018; 43:291-298. [DOI: 10.1093/jat/bky099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/29/2018] [Accepted: 12/01/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Danielle Butzbach
- Forensic Science SA, Adelaide, South Australia
- Flinders University of South Australia, Sturt Road, Bedford Park, South Australia
| | - Peter Stockham
- Forensic Science SA, Adelaide, South Australia
- Flinders University of South Australia, Sturt Road, Bedford Park, South Australia
| | - Timothy Scott
- Forensic Science SA, Adelaide, South Australia
- Flinders University of South Australia, Sturt Road, Bedford Park, South Australia
| | - Greg Abroe
- Forensic Science SA, Adelaide, South Australia
| | - Ben Painter
- Forensic Science SA, Adelaide, South Australia
- Flinders University of South Australia, Sturt Road, Bedford Park, South Australia
| | | | | |
Collapse
|