1
|
Hossain MM, Zainal Abidin SAS, Bujang A, Taib MN, Sagadevan S, Johan MR, Ahmad Nizar NN. TaqMan multiplex qPCR for detecting animal species in meat and meat products: Development, recent advances and future prospects. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Nurbekovna IA, Kairkenovna AG, Beisenbayevich AA, Serikovna SZ. Meta-analysis data of the accuracy of tests for meat adulteration by real-time PCR. Data Brief 2022; 41:107972. [PMID: 35242949 PMCID: PMC8881715 DOI: 10.1016/j.dib.2022.107972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
|
3
|
Zhang X, Armani A, Giusti A, Wen J, Fan S, Ying X. Molecular authentication of crocodile dried food products (meat and feet) and skin sold on the Chinese market: Implication for the European market in the light of the new legislation on reptile meat. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Combination of Computational Techniques to Obtain High-Quality Gelatin-Base Gels from Chicken Feet. Polymers (Basel) 2021; 13:polym13081289. [PMID: 33920928 PMCID: PMC8071339 DOI: 10.3390/polym13081289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
With the increasing global population, it has become necessary to explore new alternative food sources to meet the increasing demand. However, these alternatives sources should not only be nutritive and suitable for large scale production at low cost, but also present good sensory characteristics. Therefore, this situation has influenced some industries to develop new food sources with competitive advantages, which require continuous innovation by generating and utilising new technologies and tools to create opportunities for new products, services, and industrial processes. Thus, this study aimed to optimise the production of gelatin-base gels from chicken feet by response surface methodology (RSM) and facilitate its sensorial classification by Kohonen’s self-organising maps (SOM). Herein, a 22 experimental design was developed by varying sugar and powdered collagen contents to obtain grape flavoured gelatin from chicken feet. The colour, flavour, aroma, and texture attributes of gelatines were evaluated by consumers according to a hedonic scale of 1–9 points. Least squares method was used to develop models relating the gelatin attributes with the sugar content and collagen mass, and their sensorial qualities were analysed and classified using the SOM algorithm. Results showed that all gelatin samples had an average above six hedonic points, implying that they had good consumer acceptance and can be marketed. Furthermore, gelatin D, with 3.65–3.80% (w/w) powdered collagen and 26.5–28.6% (w/w) sugar, was determined as the best. Thus, the SOM algorithm proved to be a useful computational tool for comparing sensory samples and identifying the best gelatin product.
Collapse
|
5
|
Hossain MAM, Uddin SMK, Sultana S, Wahab YA, Sagadevan S, Johan MR, Ali ME. Authentication of Halal and Kosher meat and meat products: Analytical approaches, current progresses and future prospects. Crit Rev Food Sci Nutr 2020; 62:285-310. [DOI: 10.1080/10408398.2020.1814691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M. A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Sharmin Sultana
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Yasmin Abdul Wahab
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Md. Eaqub Ali
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Li YC, Liu SY, Meng FB, Liu DY, Zhang Y, Wang W, Zhang JM. Comparative review and the recent progress in detection technologies of meat product adulteration. Compr Rev Food Sci Food Saf 2020; 19:2256-2296. [PMID: 33337107 DOI: 10.1111/1541-4337.12579] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Meat adulteration, mainly for the purpose of economic pursuit, is widespread and leads to serious public health risks, religious violations, and moral loss. Rapid, effective, accurate, and reliable detection technologies are keys to effectively supervising meat adulteration. Considering the importance and rapid advances in meat adulteration detection technologies, a comprehensive review to summarize the recent progress in this area and to suggest directions for future progress is beneficial. In this review, destructive meat adulteration technologies based on DNA, protein, and metabolite analyses and nondestructive technologies based on spectroscopy were comparatively analyzed. The advantages and disadvantages, application situations of these technologies were discussed. In the future, determining suitable indicators or markers is particularly important for destructive methods. To improve sensitivity and save time, new interdisciplinary technologies, such as biochips and biosensors, are promising for application in the future. For nondestructive techniques, convenient and effective chemometric models are crucial, and the development of portable devices based on these technologies for onsite monitoring is a future trend. Moreover, omics technologies, especially proteomics, are important methods in laboratory detection because they enable multispecies detection and unknown target screening by using mass spectrometry databases.
Collapse
Affiliation(s)
- Yun-Cheng Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Shu-Yan Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Fan-Bing Meng
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Da-Yu Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Yin Zhang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Wei Wang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Jia-Min Zhang
- Key Laboratory of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|