1
|
Ling J, Liang L, Liu X, Wu W, Yan Z, Zhou W, Jiang Y, Kuang L. Invasive Fusarium solani infection diagnosed by traditional microbial detection methods and metagenomic next-generation sequencing in a pediatric patient: a case report and literature review. Front Med (Lausanne) 2024; 11:1322700. [PMID: 39040893 PMCID: PMC11260673 DOI: 10.3389/fmed.2024.1322700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Fusarium solani, as an opportunistic pathogen, can infect individuals with immunosuppression, neutropenia, hematopoietic stem cell transplantation (HSCT), or other high-risk factors, leading to invasive or localized infections. Particularly in patients following allogeneic HSCT, Fusarium solani is more likely to cause invasive or disseminated infections. This study focuses on a pediatric patient who underwent HSCT for severe aplastic anemia. Although initial blood cultures were negative, an abnormality was detected in the 1,3-β-D-glucan test (G test) post-transplantation. To determine the causative agent, blood samples were subjected to metagenomic next-generation sequencing (mNGS) and blood cultures simultaneously. Surprisingly, the results of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and mNGS differed slightly, with mNGS identifying Nectria haematonectria, while MALDI-TOF MS based on culture showed Fusarium solani. To clarify the results, Sanger sequencing was performed for further detection, and the results were consistent with those of MALDI-TOF MS. Since the accuracy of Sanger sequencing is higher than that of mNGS, the diagnosis was revised to invasive Fusarium solani infection. With advancements in technology, various detection methods for invasive fungi have been developed in recent years, such as mNGS, which has high sensitivity. While traditional methods may be time-consuming, they are important due to their high specificity. Therefore, in clinical practice, it is essential to utilize both traditional and novel detection methods in a complementary manner to enhance the diagnosis of invasive fungal infections.
Collapse
Affiliation(s)
- Jiaji Ling
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Liting Liang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xingxin Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wenjing Wu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wei Zhou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Linghan Kuang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Behrens AM, Sulyok M, Krska R, Hennies I, Ern A, Blechmann C, Meyer JC. Occurrence of Alternaria secondary metabolites in milling oats and its de-hulled fractions from harvest years 2017 to 2021. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:188-200. [PMID: 38190265 DOI: 10.1080/19440049.2023.2294003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
In this study, secondary metabolites produced by Alternaria were investigated for their presence in milling oats. For this purpose, pre-cleaned milling oat samples (n = 193), intended for human consumption, out of harvest years 2017 to 2021 originating from different northern European countries were analysed by LC-MS/MS. Alternariol and alternariol methyl ether were positively identified in 38% of the samples with mean values of 2.1 µg/kg and 1.2 µg/kg, respectively. The highest concentrations of 50.5 µg/kg alternariol and 24.2 µg/kg of alternariol methyl ether were detected in a Latvian sample. Tenuazonic acid was found in 45% of all samples, with a mean concentration of 28.9 µg/kg and a maximum concentration of 1430 µg/kg, also in a Latvian sample. Tentoxin was detected in 49% of all samples with a mean value of 1.7 µg/kg. The Alternaria metabolite most frequently detected in 96% of all samples was infectopyrone with a mean concentration of 593 µg/kg and a maximum value reaching up to 3990 µg/kg in a German sample. In addition, eight oat samples were selected to investigate to what extent the Alternaria metabolites are distributed between the oat hulls and the oat kernels. After de-hulling, approximately 23% of Alternaria metabolites were found in the remaining oat kernels. According to the results, alternariol, infectopyrone and altersetin were present in the kernels with the lowest proportion of 10%-20% on average, respectively. The values for tentoxin showed that about 60% of tentoxin was contained in the hulls, while almost 40% remained in the oat kernel. This suggests that potential health risks posed by Alternaria secondary metabolites and metabolites of other fungal genera in milling oats can be reduced by de-hulling.
Collapse
Affiliation(s)
- Anna Marie Behrens
- H. & J. Brüggen KG, Lübeck, Germany
- Department of Agriculture and Food Sciences, University Neubrandenburg, Neubrandenburg, Germany
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | | | | | | | | |
Collapse
|
3
|
Venslovas E, Mankevičienė A, Kochiieru Y, Janavičienė S, Dabkevičius Z, Bartkevičs V, Bērziņa Z, Pavlenko R. The Effect of Ustilago maydis and Delayed Harvesting on A- and B-Type Trichothecene Concentrations in Maize Grain. J Fungi (Basel) 2023; 9:794. [PMID: 37623565 PMCID: PMC10455307 DOI: 10.3390/jof9080794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
The aim of this study was to investigate whether, in the context of a higher incidence of Ustilago maydis and Fusarium spp. at optimal and delayed harvest times, a higher incidence of mycotoxin contamination in maize grains could be expected. The field experiment was carried out at the Lithuanian Research Centre for Agriculture and Forestry experimental fields over three consecutive years (2020-2022). Two maize hybrids (Duxxbury and Lapriora) with different FAO numbers were used. The experimental design in the field was a randomized complete block design. Harvesting took place at three different times: first at physiological maturity, and then 10 (±2) and 20 (±2) days after the first harvest. Each hybrid had four repetitions at different harvest times. The U. maydis infection was only detected in 2021 and after the first harvest cobs were further divided into four different groups with four repetitions: healthy cobs, cobs visually infected with Fusarium spp., cobs visually infected with common smut, and cobs visually infected with both pathogens. No U. maydis-damaged maize cobs were found in 2020 and 2022. The levels of Fusarium microscopic fungi in maize grains were also from 4 to 16 times higher in 2021 than in 2020 and 2022. Harvest delays in 2020 led to a significant deoxynivalenol concentration increase in the Duxxbury hybrid and an HT-2 concentration increase in the Lapriora hybrid. In 2021, deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, and HT-2 concentrations significantly rose in both hybrids, but the T-2 concentration significantly increased only in the Lapriora hybrid. Deoxynivalenol concentrations were, respectively, 110 and 14.6 times higher than in cobs only infected with Fusarium spp. or U. maydis. Concentrations of 15-acetyl-deoxynivalenol were, respectively, 60, 67, and 43 times higher than in asymptomatic cobs and cobs only infected with Fusarium spp. or U. maydis. Cobs contaminated with both pathogens also had higher concentrations of 3-acetyl-deoxynivalenol. T-2 and HT-2 were detected in maize grains harvested from cobs infected only with Fusarium spp. The presence of U. maydis and Fusarium fungi in maize cobs, along with harvest delays, led to significant increases in mycotoxin concentrations, highlighting the importance of timely harvesting and pathogen management to mitigate mycotoxin contamination in maize grains.
Collapse
Affiliation(s)
- Eimantas Venslovas
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, LT-58344 Akademija, Lithuania
| | - Audronė Mankevičienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, LT-58344 Akademija, Lithuania
| | - Yuliia Kochiieru
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, LT-58344 Akademija, Lithuania
| | - Sigita Janavičienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, LT-58344 Akademija, Lithuania
| | - Zenonas Dabkevičius
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, LT-58344 Akademija, Lithuania
| | - Vadims Bartkevičs
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia
| | - Zane Bērziņa
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia
| | - Romans Pavlenko
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia
| |
Collapse
|