1
|
Vancoillie F, Verkempinck SHE, Hendrickx ME, Van Loey AM, Grauwet T. Farm to Fork Stability of Phytochemicals and Micronutrients in Brassica oleracea and Allium Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39012491 DOI: 10.1021/acs.jafc.4c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Brassica oleracea and Allium vegetables are known for their unique, family specific, water-soluble phytochemicals, glucosinolates, and S-alk(en)yl-l-cysteine sulfoxides, respectively. However, they are also important delivery systems of several other health-related compounds, such as carotenoids (lipid-soluble phytochemicals), vitamin C (water-soluble micronutrient), and vitamin K1 (lipid-soluble micronutrient). When all-year-round availability or transport over long distances is targeted for these often seasonal, locally grown vegetables, processing becomes indispensable. However, the vegetable processing chain, which consists of multiple steps (e.g., pretreatment, preservation, storage, preparation), can impact the nutritional quality of these vegetables corresponding to the nature of the health-related compounds and their susceptibility to (bio)chemical conversions. Since information about the impact of the vegetable processing chain is scattered per compound or processing step, this review targets an integration of the state of the art and discusses needs for future research. Starting with a discussion on substrate-enzyme location within the vegetable matrix, an overview is provided of the impact and potential of processing, encompassing a wide range of (nonenzymatic) conversions.
Collapse
Affiliation(s)
- Flore Vancoillie
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Sarah H E Verkempinck
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Marc E Hendrickx
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Ann M Van Loey
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Tara Grauwet
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Zhang F, Lin PX, Xia PX, Di HM, Zhang JQ, Wang ZH, Li ZQ, Huang SY, Li HX, Sun B. The effect of different thawing methods on the health-promoting compounds and antioxidant capacity in frozen baby mustard. RSC Adv 2021; 11:9856-9864. [PMID: 35423474 PMCID: PMC8695503 DOI: 10.1039/d1ra00610j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/26/2021] [Indexed: 11/21/2022] Open
Abstract
The effects of five domestic thawing methods, including air thawing (AIR), water thawing with bags (W + B), water thawing without bags (W - B), refrigerator thawing (REF), and microwave thawing (MIC), on the main health-promoting compounds and antioxidant capacity in both unblanched and blanched baby mustard were investigated in this study. The results showed that different thawing methods markedly affected the health-promoting compounds and antioxidant capacity of baby mustard. MIC better retained the overall nutritional quality of frozen baby mustard compared with the four other treatments. AIR led to significant decreases in the glucosinolate contents in unblanched and blanched baby mustard. W + B led to significant decreases in the total phenols contents and antioxidant capacity levels in unblanched and blanched baby mustard, as well as the ascorbic acid content in unblanched baby mustard. W + B led to a significant decrease in the FRAP level in unblanched baby mustard, as well as the glucosinolate and ascorbic acid contents and ABTS level in blanched baby mustard. REF led to significant decreases in glucosinolates and proanthocyanidins contents in unblanched baby mustard, as well as the ascorbic acid content in blanched baby mustard. Furthermore, the thawing time was greatly shortened by MIC (only approximately 1 min). Thus, MIC was the optimal thawing method for frozen baby mustard regardless of whether it was blanched, as MIC best preserved nutritional quality and reduced the thawing time.
Collapse
Affiliation(s)
- Fen Zhang
- College of Horticulture, Sichuan Agricultural University Chengdu 611130 China
| | - Pei-Xing Lin
- College of Horticulture, Sichuan Agricultural University Chengdu 611130 China
| | - Ping-Xin Xia
- College of Horticulture, Sichuan Agricultural University Chengdu 611130 China
| | - Hong-Mei Di
- College of Horticulture, Sichuan Agricultural University Chengdu 611130 China
| | - Jia-Qi Zhang
- College of Horticulture, Sichuan Agricultural University Chengdu 611130 China
| | - Zi-Han Wang
- College of Horticulture, Sichuan Agricultural University Chengdu 611130 China
| | - Zhi-Qing Li
- College of Horticulture, Sichuan Agricultural University Chengdu 611130 China
| | - Shu-Ya Huang
- College of Horticulture, Sichuan Agricultural University Chengdu 611130 China
| | - Huan-Xiu Li
- Institute of Pomology and Olericulture, Sichuan Agricultural University Chengdu 611130 China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University Chengdu 611130 China
| |
Collapse
|
3
|
Nuñez-Gómez V, Baenas N, Navarro-González I, García-Alonso J, Moreno DA, González-Barrio R, Periago-Castón MJ. Seasonal Variation of Health-Promoting Bioactives in Broccoli and Methyl-Jasmonate Pre-Harvest Treatments to Enhance Their Contents. Foods 2020; 9:E1371. [PMID: 32993199 PMCID: PMC7599945 DOI: 10.3390/foods9101371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Broccoli is a source of bioactive compounds that provide an important nutritional value. The content of these compounds can vary depending on agronomic and environmental conditions, as well as on elicitation. In this study, three crop trials were carried out to evaluate the effects of the cultivation season, the application of different dosages of methyl-jasmonate (MeJA) on the overall quality and on the total content of bioactive compounds of 'Parthenon' broccoli cultivated under the field conditions of southeastern Spain. Color parameters, chlorophyll content, total phenolic compounds, total flavonoids and antioxidant activity were measured to evaluate the overall quality. Moreover, individual carotenoids, phenolic compounds and glucosinolates were evaluated by high performance liquid chromatography with diode array detection (HPLC-DAD) and high performance liquid chromatography equipped with diode array detector coupled to mass spectrometer using electro spray ionization (HPLC-DAD-ESI/MSn). The content of total carotenoids, phenolic compounds and glucosinolates were higher in autumn compared with spring, showing increases of 2.8-fold, 2-fold and 1.2-fold, respectively. Moreover, a double application of MeJA increased the contents of total carotenoids, phenolic compounds and glucosinolates by 22%, 32% and 39%, respectively, relative to the untreated samples. Considering our results, the controlled and timely application of 250 µM MeJA to the aerial parts of the plants four days before harvest, on two consecutive days, seems to be a valid agronomic strategy to improve the health-promoting capacity of Parthenon broccoli, without compromising its overall quality.
Collapse
Affiliation(s)
- Vanesa Nuñez-Gómez
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30100 Murcia, Spain; (V.N.-G.); (N.B.); (I.N.-G.); (J.G.-A.); (M.J.P.-C.)
| | - Nieves Baenas
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30100 Murcia, Spain; (V.N.-G.); (N.B.); (I.N.-G.); (J.G.-A.); (M.J.P.-C.)
| | - Inma Navarro-González
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30100 Murcia, Spain; (V.N.-G.); (N.B.); (I.N.-G.); (J.G.-A.); (M.J.P.-C.)
| | - Javier García-Alonso
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30100 Murcia, Spain; (V.N.-G.); (N.B.); (I.N.-G.); (J.G.-A.); (M.J.P.-C.)
| | - Diego A. Moreno
- Phytochemistry and Healthy Foods Lab, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo-25, E-30100 Murcia, Spain;
| | - Rocío González-Barrio
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30100 Murcia, Spain; (V.N.-G.); (N.B.); (I.N.-G.); (J.G.-A.); (M.J.P.-C.)
| | - Mª Jesús Periago-Castón
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30100 Murcia, Spain; (V.N.-G.); (N.B.); (I.N.-G.); (J.G.-A.); (M.J.P.-C.)
| |
Collapse
|
4
|
Hoppu U, Puputti S, Sandell M. Factors related to sensory properties and consumer acceptance of vegetables. Crit Rev Food Sci Nutr 2020; 61:1751-1761. [PMID: 32441536 DOI: 10.1080/10408398.2020.1767034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Many consumers perceive the bitter taste or other sensory characteristic of vegetables as unpleasant, posing a challenge to dietary recommendations aiming to increase vegetable consumption. Food experience is multisensory, with complex interactions between the senses and individual differences in sensory perception. This review focuses on the factors affecting sensory properties of vegetables and sensory perception of vegetables among adults. Topical examples of sensory quality and evaluation of vegetable samples are presented. Cultivar and growing conditions are related to the internal sensory quality of vegetables. The effects of different processing methods, such as freezing and cooking, on the sensory properties of vegetables are also reviewed. Flavor modification of vegetables with seasonings may be used to improve palatability and incorporating vegetables to meals may increase the intake of vegetables. Recently, external factors (e.g. visual and odor stimuli) have been tested in multisensory research in the context of vegetable perception and choice. These options to achieve better sensory quality, more palatable meals and pleasant eating context may be used to promote vegetable intake among adults.
Collapse
Affiliation(s)
- Ulla Hoppu
- Functional Foods Forum, University of Turku, Turku, Finland
| | - Sari Puputti
- Functional Foods Forum, University of Turku, Turku, Finland
| | - Mari Sandell
- Functional Foods Forum, University of Turku, Turku, Finland.,Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Zhang R, Wang Y, Wang X, Luan D. Study of heating characteristics for a continuous 915 MHz pilot scale microwave thawing system. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Miao H, Lin J, Zeng W, Wang M, Yao L, Wang Q. Main Health-Promoting Compounds Response to Long-Term Freezer Storage and Different Thawing Methods in Frozen Broccoli Florets. Foods 2019; 8:foods8090375. [PMID: 31480590 PMCID: PMC6769634 DOI: 10.3390/foods8090375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
The effects of long-term freezer storage and different defrosting methods on the retention of glucosinolates, vitamin C, and total phenols in frozen broccoli florets were investigated in the present study. Frozen broccoli florets were stored in a freezer at -20 °C for 165 days or subjected to defrosting by three different house-hold thawing methods (water, air, and refrigerator defrosting). Results showed that all glucosinolates were well preserved, while vitamin C and total phenols were reduced by less than 12% and 19% of the control, respectively, during the storage. Besides, refrigerator and air defrosting were better than water defrosting in glucosinolates retention, and refrigerator defrosting was the best in vitamin C preservation. No difference was observed in reserving phenolic compounds among the three methods. In conclusion, long-term freezer storage is an excellent way to preserve broccoli florets, and refrigerator defrosting is the best way to maintain the nutritional compounds in frozen broccoli florets.
Collapse
Affiliation(s)
- Huiying Miao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Jiayao Lin
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Wei Zeng
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Mengyu Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Leishuan Yao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| |
Collapse
|
7
|
Danowska‐Oziewicz M, Narwojsz A, Draszanowska A, Marat N. The effects of cooking method on selected quality traits of broccoli and green asparagus. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marzena Danowska‐Oziewicz
- Department of Human Nutrition Faculty of Food Science University of Warmia and Mazury ul. Słoneczna 45F 10-718 Olsztyn Poland
| | - Agnieszka Narwojsz
- Department of Human Nutrition Faculty of Food Science University of Warmia and Mazury ul. Słoneczna 45F 10-718 Olsztyn Poland
| | - Anna Draszanowska
- Department of Human Nutrition Faculty of Food Science University of Warmia and Mazury ul. Słoneczna 45F 10-718 Olsztyn Poland
| | - Natalia Marat
- Department of Human Nutrition Faculty of Food Science University of Warmia and Mazury ul. Słoneczna 45F 10-718 Olsztyn Poland
| |
Collapse
|
8
|
Aguilar-Camacho M, Welti-Chanes J, Jacobo-Velázquez DA. Combined effect of ultrasound treatment and exogenous phytohormones on the accumulation of bioactive compounds in broccoli florets. ULTRASONICS SONOCHEMISTRY 2019; 50:289-301. [PMID: 30274889 DOI: 10.1016/j.ultsonch.2018.09.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 05/23/2023]
Abstract
Postharvest treatments such as wounding, ultrasound (US) and the exogenous application of ethylene (ET) and methyl jasmonate (MJ) have been studied as an effective tool to improve the content of secondary metabolites in fresh produce. The present study evaluated the immediate and late response (storage for 72 h at 15 °C) to US treatment (20 min, frequency 24 kHz, amplitude 100 μm) alone and combined with exogenous MJ (250 ppm) and/or ET (1000 ppm) on glucosinolates, isothiocyanates, phenolic compounds and ascorbic acid content in broccoli florets. US treatment increased the extractability of glucosinolates [glucoraphanin (795%), 4-hydroxy glucobrassicin (153%), glucobrassicin (78.6%)] and phenolics [1-sinapoyl-2-feruloylgentiobiose (57.23%)] as compared with the control (CT). The combined application of MJ and US in broccoli florets, induced a synergistic effect on the accumulation of 4-hydroxy glucobrassicin (187.1%), glucoerucin (111.92%), gluconasturtiin (755.9%), neoglucobrassicin (232.8%), 3-O-caffeoylquinic acid (73.4%), 1-sinapoyl-2-ferulolylgentiobiose (56.0%), and 1,2,2-trisinapoylgentiobiose (136.7%) at 72 h of storage. Interestingly, when the three stressors were applied together the synergistic effect of US + MJ observed on the accumulation of glucosinolates and phenolics was repressed. In general, the ascorbic acid content was not affected by US treatment and decreased in most samples during storage. However, when MJ + ET were applied, the content of total ascorbic acid was significantly reduced in CT + MJ + ET and US + MJ + ET samples after 72 h of storage by 53.4% and 86.6%, respectively, as compared with CT 0 h samples. Based on the results herein obtained, the application of US can be an effective tool to enhance the extractability of certain glucocosinolate and phenolic compounds in broccoli. Moreover, due to the synergistic effect observed on the accumulation of bioactive compounds, the combined application of US and MJ could be a practical approach to yield higher levels of glucosinolates and phenolic compounds in broccoli during storage.
Collapse
Affiliation(s)
- Miguel Aguilar-Camacho
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., Mexico
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., Mexico
| | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., Mexico; Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo Mexico, C.P. 45138 Zapopan, Jal., Mexico.
| |
Collapse
|
9
|
Paśko P, Tyszka-Czochara M, Galanty A, Gdula-Argasińska J, Żmudzki P, Bartoń H, Zagrodzki P, Gorinstein S. Comparative Study of Predominant Phytochemical Compounds and Proapoptotic Potential of Broccoli Sprouts and Florets. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2018; 73:95-100. [PMID: 29675806 PMCID: PMC5956025 DOI: 10.1007/s11130-018-0665-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The study compares lyophilized broccoli sprouts and florets in terms of their chemical composition, cytotoxic and proapoptotic potential against hepatocellular carcinoma HepG2, colorectal cancer SW480, and skin fibroblast BJ cells. Sinapic and isochlorogenic acids were predominant phenolics in the sprouts and florets, respectively. The amount of sulforaphane in the sprouts was significantly higher vs. florets. Oleic and linoleic acids dominated in the sprouts, while caproic, stearic and oleic acids in the florets. Broccoli sprouts were selectively cytotoxic on HepG2 and SW480 cells, with proapoptotic effect for the latter, while the florets were less selective, but more active, with profound proapoptotic effect for HepG2 cells (77.4%). Thus, lyophilized broccoli sprouts may be effectively used in dietary chemoprevention.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland.
| | - Małgorzata Tyszka-Czochara
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Medical College, Jagiellonian University, 30-688, Kraków, Poland
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Medical College, Jagiellonian University, 30-688, Kraków, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Medical College, Jagiellonian University, 30-688, Kraków, Poland
| | - Henryk Bartoń
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Hadassah Medical School, The Hebrew University, 91120, Jerusalem, Israel
| |
Collapse
|
10
|
Moreira-Rodríguez M, Nair V, Benavides J, Cisneros-Zevallos L, Jacobo-Velázquez DA. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts. Int J Mol Sci 2017; 18:E2330. [PMID: 29113068 PMCID: PMC5713299 DOI: 10.3390/ijms18112330] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m²) or UVB (7.16 W/m²) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied.
Collapse
Affiliation(s)
- Melissa Moreira-Rodríguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| | - Vimal Nair
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Jorge Benavides
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| | - Daniel A Jacobo-Velázquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., México.
| |
Collapse
|