1
|
Li K, Wang Y, Liu W, Zhang C, Xi Y, Zhou Y, Li H, Liu X. Structure-Activity Relationships and Changes in the Inhibition of Xanthine Oxidase by Polyphenols: A Review. Foods 2024; 13:2365. [PMID: 39123556 PMCID: PMC11312107 DOI: 10.3390/foods13152365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Hyperuricemia (HUA), or elevated uric acid in the blood, has become more prevalent in recent years. Polyphenols, which are known to have good inhibitory activity on xanthine oxidoreductase (XOR), are effective in uric acid reduction. In this review, we address the structure-activity relationship of flavonoids that inhibit XOR activity from two perspectives: the key residues of XOR and the structural properties of flavonoids. Flavonoids' inhibitory effect is enhanced by their hydroxyl, methoxy, and planar structures, whereas glycosylation dramatically reduces their activity. The flavonoid structure-activity relationship informed subsequent discussions of the changes that occur in polyphenols' XOR inhibitory activity during their extraction, processing, gastrointestinal digestion, absorption, and interactions. Furthermore, gastrointestinal digestion and heat treatment during processing can boost the inhibition of XOR. Polyphenols with comparable structures may have a synergistic effect, and their synergy with allopurinol thus provides a promising future research direction.
Collapse
Affiliation(s)
- Kexin Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | - Yumei Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | - Wanlu Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | | | - Yu Xi
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | - Yanv Zhou
- The Product Makers Co., Ltd., Shanghai 200444, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| |
Collapse
|
2
|
Frazaei MH, Nouri R, Arefnezhad R, Pour PM, Naseri M, Assar S. A Review of Medicinal Plants and Phytochemicals for the Management of Gout. Curr Rheumatol Rev 2024; 20:223-240. [PMID: 37828678 DOI: 10.2174/0115733971268037230920072503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 10/14/2023]
Abstract
Gout, characterized by elevated uric acid levels, is a common inflammatory joint disease associated with pain, joint swelling, and bone erosion. Existing treatments for gout often result in undesirable side effects, highlighting the need for new, safe, and cost-effective anti-gout drugs. Natural products, including medicinal plants and phytochemicals, have gained attention as potential sources of anti-gout compounds. In this review, we examined articles from 2000 to 2020 using PubMed and Google Scholar, focusing on the effectiveness of medicinal plants and phyto-chemicals in managing gout. Our findings identified 14 plants and nine phytochemicals with anti-gout properties. Notably, Teucrium polium, Prunus avium, Smilax riparia, Rhus coriaria, Foenic-ulum vulgare, Allium cepa, Camellia japonica, and Helianthus annuus exhibited the highest xa-thine oxidase inhibitory activity, attributed to their unique natural bioactive compounds such as phenolics, tannins, coumarins, terpenoids, and alkaloids. Herbal plants and their phytochemicals have demonstrated promising effects in reducing serum urate and inhibiting xanthine. This review aims to report recent studies on plants/phytochemicals derived from herbs beneficial in gout and their different mechanisms.
Collapse
Affiliation(s)
- Mohammad Hosein Frazaei
- Department of Pharmacology, Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roghayeh Nouri
- Department of Pharmacology, Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Arefnezhad
- Anatomical Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pardis Mohammadi Pour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Naseri
- Department of Pharmacology, Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Cheng-yuan W, Jian-gang D. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components. Front Nutr 2023; 10:1186161. [PMID: 37377486 PMCID: PMC10291132 DOI: 10.3389/fnut.2023.1186161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperuricemia is another common metabolic disease, which is considered to be closely related to the development of many chronic diseases, in addition to the "three highs." Currently, although drugs show positive therapeutic effects, they have been shown to produce side effects that can damage the body. There is growing evidence that medicinal and edible plants and their bioactive components have a significant effect on hyperuricemia. In this paper, we review common medicinal and edible plants with uric acid-lowering effects and summarize the uric acid-lowering mechanisms of different bioactive components. Specifically, the bioactive components are divided into five categories: flavonoids, phenolic acids, alkaloids, polysaccharides, and saponins. These active substances exhibit positive uric acid-lowering effects by inhibiting uric acid production, promoting uric acid excretion, and improving inflammation. Overall, this review examines the potential role of medicinal and edible plants and their bioactive components as a means of combating hyperuricemia, with the hope of providing some reference value for the treatment of hyperuricemia.
Collapse
|
4
|
Proximate Composition, Physicochemical, and Lipids Profiling and Elemental Profiling of Rapeseed (Brassica napus L.) and Sunflower (Helianthus annuus L.) Grown in Morocco. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3505943. [PMID: 36238607 PMCID: PMC9552689 DOI: 10.1155/2022/3505943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
We investigate and compare the nutritional and physicochemical properties of rapeseed and sunflower grown in Morocco. In order to examine a complete physicochemical characterization, various parameters such as mineral profile, fatty acid composition, sterols contents, total flavonoids content (TFC), total polyphenols content (TPC), and quality oil parameters were evaluated. The results showed a relatively small difference in the physicochemical composition of the seeds, as sunflower seeds recorded higher amounts of protein and oil content (22.98 ± 0.01 g/100 g and 41.30 ± 0.50 g/100 g) than rapeseed (22.98 ± 0.01 and 38.80 ± 0.50), while mineral elements profile was observed to be statistically different. Nevertheless, both seeds were rich in K, Ca, P, Mg, and Na and they were relatively poor in Na, Fe, Mn, Cu, and Zn. The most represented macroelement was K with the amount of 7936.53 ± 63.87 mg/Kg in rapeseed and 7739.22 ± 59.50 mg/Kg in sunflower. On the other hand, Cu was present in the analyzed samples the least, mostly below 20 mg/kg. For TPC and TFC, the sunflower recorded higher values (49.73 ± 0.50 and 25.37 ± 0.39 mg GAE/g) than rapeseed (38.49 ± 0.24 and 22.55 ± 1.76 mg QE/g). The fatty acid composition showed that both extracted oils have beneficial proprieties, as they are rich in unsaturated fatty acids; namely, rapeseed oil contains a high level of oleic acid (C18 : 1) (62.19%), while sunflower oil was richer in linoleic acid (C18 : 2) (55.7%). As a result, we conclude that the studied varieties have major importance in terms of both nutritional and seed improvement potentials.
Collapse
|
5
|
Resende DISP, Jesus A, Sousa Lobo JM, Sousa E, Cruz MT, Cidade H, Almeida IF. Up-to-Date Overview of the Use of Natural Ingredients in Sunscreens. Pharmaceuticals (Basel) 2022; 15:ph15030372. [PMID: 35337168 PMCID: PMC8949675 DOI: 10.3390/ph15030372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
The photoprotective skincare segment is in high demand to meet consumer concerns on UV-induced skin damage, with a recent trend towards sunscreen alternatives with a natural origin. In this study, the use of natural ingredients, either from terrestrial or marine origin, in a panel of 444 sunscreen commercial formulations (2021) was analyzed. Ingredients from terrestrial organisms represent the large majority found in the analyzed sunscreen formulations (48%), whereas marine ingredients are present only in 13% of the analyzed products. A deeper analysis regarding the most prevalent families of ingredients from terrestrial and marine organisms used as top ingredients is also presented, as well as their mechanisms of action. This study provides an up-to-date overview of the sunscreen market regarding the use of natural ingredients, which is of relevance for scientists involved in the development of new sunscreens to identify opportunities for innovation.
Collapse
Affiliation(s)
- Diana I. S. P. Resende
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Jesus
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - José M. Sousa Lobo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence: (E.S.); (I.F.A.); Tel.: +351-220-428-689 (E.S.); +351-220-428-621 (I.F.A.)
| | - Maria T. Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Honorina Cidade
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (H.C.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel F. Almeida
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.J.); (J.M.S.L.)
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (E.S.); (I.F.A.); Tel.: +351-220-428-689 (E.S.); +351-220-428-621 (I.F.A.)
| |
Collapse
|
6
|
Reichembach LH, Lúcia de Oliveira Petkowicz C. Pectins from alternative sources and uses beyond sweets and jellies: An overview. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Qiao Z, Han L, Liu X, Dai H, Liu C, Yan M, Li W, Han W, Li X, Huang S, Gao B. Extraction, Radical Scavenging Activities, and Chemical Composition Identification of Flavonoids from Sunflower ( Helianthus annuus L.) Receptacles. Molecules 2021; 26:molecules26020403. [PMID: 33466694 PMCID: PMC7828773 DOI: 10.3390/molecules26020403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
This study was focused on extraction, radical scavenging activities, and chemical composition identification of total flavonoids in sunflower (Helianthus annuus L.) receptacles (TFSR). We investigated the optimal extract parameters of TFSR using response surface methodology. The highest yield of TFSR was 1.04% with the ethanol concentration 58%, the material-to-liquid ratio 1:20 (v/w), the extraction time 2.6 h, and the extraction temperature 67 °C. The results of radical scavenging activities showed that ethyl acetate fraction (EAF) was the strongest by using 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2’-azino-bis (3-ethylbenzo thiazoline-6-sulfonic acid) (ABTS) and iron ion reducing analysis. The EAF had the highest flavonoids contents. Four fractions A, B, C and D were enrichment from EAF by polyamide resin. Fraction B had the highest flavonoids content. Thirteen chemical components of flavonoids in fraction B were first identified by Ultimate 3000 Nano LC System coupled to a Q Exactive HF benchtop Orbitrap mass spectrometer (UHPLC-HRMS/MS). Among of the thirteen chemical components, isoquercetin and daidzein were identified accurately by comparing with standard samples. Radical scavenging analysis showed that isoquercetin and EAF had strong activities. Therefore, sunflower receptacles can be used as a source of natural flavonoids. TFSR as a natural radical scavenger has potential applications in pharmaceutical industry.
Collapse
Affiliation(s)
- Zian Qiao
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
- Third-Level Laboratory of National Administration of Traditional Chinese Medicine, Jilin University, Changchun 130012, China
| | - Lu Han
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
- Key Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Ministry of Education, Changchun 130012, China
| | - Xinsheng Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
- Key Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Ministry of Education, Changchun 130012, China
| | - Huining Dai
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
| | - Changmin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
| | - Min Yan
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
| | - Wannan Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
| | - Weiwei Han
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
- Key Laboratory for Molecular Enzymology and Engineering, Jilin University, Ministry of Education, Changchun 130012, China
| | - Xinlu Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
| | - Silu Huang
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
| | - Bo Gao
- School of Life Sciences, Jilin University, Changchun 130012, China; (Z.Q.); (L.H.); (X.L.); (H.D.); (C.L.); (M.Y.); (W.L.); (W.H.); (X.L.); (S.H.)
- Third-Level Laboratory of National Administration of Traditional Chinese Medicine, Jilin University, Changchun 130012, China
- Correspondence: ; Tel.: +86-131-3443-5290; Fax: +86-431-8515-5127
| |
Collapse
|
8
|
Gai F, Karamać M, Janiak MA, Amarowicz R, Peiretti PG. Sunflower ( Helianthus annuus L.) Plants at Various Growth Stages Subjected to Extraction-Comparison of the Antioxidant Activity and Phenolic Profile. Antioxidants (Basel) 2020; 9:E535. [PMID: 32575358 PMCID: PMC7346105 DOI: 10.3390/antiox9060535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to evaluate the differences in the antioxidant activity and phenolic profile of sunflower (Helianthus annuus L.) extracts obtained from the aerial parts of plants harvested at five growth stages. In vitro assays were used to determine the antioxidant activity, i.e., ABTS•+ and DPPH• scavenging activity, the ferric-reducing antioxidant power (FRAP) and the ability to inhibit β-carotene-linoleic acid emulsion oxidation. Phenolic compounds, such as mono- and dicaffeoylquinic acid isomers and caffeic acid hexose, were identified using the LC-TOF-MS/MS technique. The predominant compound during the growth cycle of the plant was 3,5-di-O-caffeoylquinic acid, whose content was the highest at the mid-flowering stage. The total phenolic content was also the highest in sunflowers at the mid-flowering stage. The main phenolic compound contents were closely correlated with ABTS•+ and DPPH• scavenging activity and FRAP. No significant correlation was found between the total phenolic content and the antioxidant activity in the emulsion system. The highest antiradical activity and FRAP were generally determined in older plants (mid-flowering and late flowering stages). In conclusion, the aerial parts of sunflowers, in particular those harvested at the mid-flowering stage, are a good plant material from which to obtain phenolic compound extracts, albeit mainly of one class (esters of caffeic acid and quinic acid), with high antioxidant activity.
Collapse
Affiliation(s)
- Francesco Gai
- Institute of Sciences of Food Production, National Research Council, 10095 Grugliasco, Italy; (F.G.); (P.G.P.)
| | - Magdalena Karamać
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (M.A.J.); (R.A.)
| | - Michał A. Janiak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (M.A.J.); (R.A.)
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (M.A.J.); (R.A.)
| | - Pier Giorgio Peiretti
- Institute of Sciences of Food Production, National Research Council, 10095 Grugliasco, Italy; (F.G.); (P.G.P.)
| |
Collapse
|
9
|
Ahmad MN, Mohd Azli NH, Ismail H, Mohamed Iqbal MA, Mat Piah B, Normaya E. Inhibitory effects of
Manihot esculenta
extracts on
Food‐Borne
pathogens and their antioxidant properties: Supercritical fluid extraction, statistical analysis, and molecular docking study. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Norazmi Ahmad
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of ScienceInternational Islamic University Malaysia Kuantan Malaysia
- IUM Poison CentreInternational Islamic University Malaysia Kuantan Malaysia
| | - Nur Hidayah Mohd Azli
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of ScienceInternational Islamic University Malaysia Kuantan Malaysia
| | - Hakimah Ismail
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of ScienceInternational Islamic University Malaysia Kuantan Malaysia
| | | | - Bijarimi Mat Piah
- Faculty of Chemical & Natural Resources EngineeringUniversiti Malaysia Pahang Kuantan Malaysia
| | - Erna Normaya
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyyah of ScienceInternational Islamic University Malaysia Kuantan Malaysia
| |
Collapse
|
10
|
Mehmood A, Rehman AU, Ishaq M, Zhao L, Li J, Usman M, Zhao L, Rehman A, Zad OD, Wang C. In vitro and in silico Xanthine Oxidase Inhibitory Activity of Selected Phytochemicals Widely Present in Various Edible Plants. Comb Chem High Throughput Screen 2020; 23:917-930. [PMID: 32342806 DOI: 10.2174/1386207323666200428075224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE The present study was designed to evaluate the xanthine oxidase (XO) inhibitory and antioxidant activities of 30 bioactive compounds present in edible food plants for the possible treatment of hyperuricemia. MATERIALS AND METHODS The XO inhibitory, SO and DPPH radical scavenging activities of selected dietary polyphenols were determined by using colorimetric assays. The molecular docking analysis was performed to evaluate the insight into inhibitory mode of action of bioactive compounds against XO. RESULTS The results show that apigenin, galangin, kaempferol, quercetin, genistein and resveratrol potently inhibit XO enzyme among all tested compounds. Flavonoids exhibit higher, anthocyanins and hydroxycinnamic acids moderate, maslinic acid, ellagic acid, salicylic acid, [6]-gingerol and flavan-3-ols showed weak XO inhibitory activity. The results of molecular docking study revealed that these bioactive compounds bind with the active site of XO and occupy the active site which further prevents the entrance of substrate and results in the inhibition of XO. CONCLUSION Inhibition of XO gives a robust biochemical basis for management of hyperuricemia, gout and other associated diseases via controlling uric acid synthesis.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Technology, China-Canada Joint Laboratory for Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ashfaq Ur Rehman
- Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Science and Biotechnology, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Ishaq
- Beijing Advance Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Technology, China-Canada Joint Laboratory for Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Technology, China-Canada Joint Laboratory for Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Technology, China-Canada Joint Laboratory for Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Technology, China-Canada Joint Laboratory for Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Abdur Rehman
- State Key Laboratory of Food Science, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Oumeddour D Zad
- Beijing Advance Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Technology, China-Canada Joint Laboratory for Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Technology, China-Canada Joint Laboratory for Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
11
|
Optimization of Extraction Conditions of Phytochemical Compounds and Anti-Gout Activity of Euphorbia hirta L. (Ara Tanah) Using Response Surface Methodology and Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4501261. [PMID: 32047524 PMCID: PMC7007754 DOI: 10.1155/2020/4501261] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 11/18/2022]
Abstract
Gout is a common disease affected most of the people due to the elevation of uric acid in the blood. Flavonoid and phenolic compounds are reported to exert the anti-gout activity of medicinal plants. Hence, this study aimed at optimizing the extraction conditions of phenolic and flavonoid compounds as well as the anti-gout (xanthine oxidase inhibitory activity) in vitro of Euphorbia hirta using response surface methodology (RSM). The plant part used was the whole plant excluding roots. The effects of three independent variables (extraction time, X 1; extraction temperature, X 2; and solid-to-liquid ratio, X 3) on three response variables (total flavonoid content, Y 1; total phenolic content, Y 2; and xanthine oxidase inhibitory activity, Y 3) were determined using central composite design (CCD) while phytochemical profiling of the extracts was determined by liquid chromatography-mass spectrometry (LC-MS). Quadratic models produced a satisfactory fitting of the experimental data with regard to total flavonoid content (r 2 = 0.9407, p < 0.0001), total phenolic content (r 2 = 0.9383, p < 0.0001), and xanthine oxidase inhibitory activity (r 2 = 0.9794, p < 0.0001). The best extraction conditions observed for total flavonoid content, total phenolic content, and xanthine oxidase inhibitory activity were at a temperature of 79.07°C for 17.42 min with solid-to-liquid ratio of 1 : 20 g/ml. The optimum values for total flavonoid, total phenolic, and xanthine oxidase inhibitory activity were 67.56 mg RE/g, 155.21 mg GAE/g, and 91.42%, respectively. The main phytochemical compounds in the optimized E. hirta extract are neochlorogenic acid, quercetin-3β-D-glucoside, syringic acid, caffeic acid, ellagic acid, astragalin, afzelin, and quercetin. As conclusion, this study clearly demonstrated the best conditions to obtain higher xanthine oxidase inhibitory activity and phytochemical compounds which can be further used for the development of anti-gout agents.
Collapse
|
12
|
Ishaq M, Mehmood A, Ur Rehman A, Dounya Zad O, Li J, Zhao L, Wang C, Hossen I, Naveed M, Lian Y. Antihyperuricemic effect of dietary polyphenol sinapic acid commonly present in various edible food plants. J Food Biochem 2019; 44:e13111. [PMID: 31849075 DOI: 10.1111/jfbc.13111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 11/28/2022]
Abstract
The present study was conducted to evaluate the antihyperuricemic effect of sinapic acid (SA). The results showed that SA potently inhibited xanthine oxidase (XOD) in a dose-dependent manner by entering the enzyme active site and thwarting the entrance of the substrate. These results were further confirmed by the quantum chemical descriptors analysis and 1 H NMR titration analysis. The in vivo results indicated that SA not only has the potential to inhibit serum and hepatic XOD (p < .05), but also remarkably lowered serum and urine uric acid levels at 50 and 100 mg/kg bw. Furthermore, SA regulated serum creatinine and blood urea nitrogen levels to normal and lowered inflammation in the renal tubules. Thus, the utilization of SA as an antihyperuricemic agent may have considerable potential for the development of functional foods for the possible treatment of hyperuricemia. PRACTICAL APPLICATIONS: Plant-derived bioactive compounds have multiple health benefits. The present study assesses the effects of sinapic acid against hyperuricemia. The results suggested that sinapic acid may have a strong protective effect against uric acid-related complications and may be used for the formulation of functional foods. However, further mechanistic studies are required to verify this hypothesis.
Collapse
Affiliation(s)
- Muhammad Ishaq
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Arshad Mehmood
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Ashfaq Ur Rehman
- Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Science and Biotechnology, College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Oumeddour Dounya Zad
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhao
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chengtao Wang
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Imam Hossen
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Naveed
- Beijing Advance Innovation center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yunhe Lian
- Chenguang Biotech Group Co., Ltd., Quzhou, China
| |
Collapse
|
13
|
Mehmood A, Zhao L, Wang C, Hossen I, Nadeem M. Stevia residue extract alone and combination with allopurinol attenuate hyperuricemia in fructose-PO-induced hyperuricemic mice. J Food Biochem 2019; 44:e13087. [PMID: 31680279 DOI: 10.1111/jfbc.13087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 01/29/2023]
Abstract
The current project was designed to utilize flavonoids and chlorogenic acids enriched stevia residue extract (STVRE) against hyperuricemia (HU). The in vitro results showed that STVRE potently and synergistically inhibits Xanthine oxidase (XO) with allopurinol. The AFM results predicted that STVRE compounds bind with XO and alter its structure which further prevents the entrance of substrate with XO. These in vitro results were further confirmed in fructose-PO-induced hyperuricemic mice model. The results showed that supplementation of STVRE with allopurinol significantly attenuated HU, oxidative stress, and inflammation caused by UA via inhibiting the production of uric acid and lowering cyclooxygenase-2, tumor necrosis factor-alpha, prostaglandin E2, interleukin-6, and interleukin 1-beta levels in serum and renal tissues. Moreover, STVRE and allopurinol treatment attenuated, tubular dilation, infiltration of inflammatory cells, improved structure disorder of podocyte, and foot process fusion, and decreased glomerular basement membrane thickness. These findings suggested that STVRE can be used as an antihyperuricemic agent along with allopurinol. PRACTICAL APPLICATIONS: The results of present study showed that STVRE has a beneficial effect against fructose-PO-induced hyperuricemia by decreasing uric acid level, xanthine oxidase activity, improving oxidative stress and inflammation. These findings suggested that by-product of stevia (STVRE) enriched with polyphenolic compounds can be used as a functional ingredient against hyperuricemia and related diseases.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Imam Hossen
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
14
|
Mehmood A, Ishaq M, Zhao L, Yaqoob S, Safdar B, Nadeem M, Munir M, Wang C. Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). ULTRASONICS SONOCHEMISTRY 2019; 51:12-19. [PMID: 30514481 DOI: 10.1016/j.ultsonch.2018.10.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 05/16/2023]
Abstract
The present study was conducted to evaluate the influence of ultrasound on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). For this purpose, optimized conditions (temperature 50 °C, time 150 min, solid to liquid ratio 1 g:15 ml, 70% amplitude and 240 W, 20 kHz frequency, 3 s on and 3 s off) of ultrasound (US) and conventional extraction (AGE: Agitation, water bath for 150 min, 50 °C at 150 rmp) were used. The results showed significant (p < 0.05) effect of US and AGE on total phenolics (TPCs), flavonoids (TFCs) and antioxidant activities (DPPH, ABTS, FRAP, reducing activity, Cu2+ and H2O2) of butterfly pea flower extract (BPFE). The results showed an increased trend in yield, TPCs, TFCs and antioxidant activities of US treated BPFE with comparison to AGE. However, insignificant (p > 0.05) effect of US and AGE over TFlaCs and PACs were observed. Moreover, the results of Fourier-transform infrared spectroscopy (FTIR) showed little changes in spectrum and US does not affect the functional group of bioactive compounds structure. Additionally, extracts (500-2000 µg/ml) protect pBR322 plasmid DNA damage induced by (1 mM H2O2 and 1 mM FeSO4), plasma oxidation (induced by 250 µM CuCl2) and inhibit erythrocyte hemolysis (induced by 200 mM AAPH, 34.6 to 66.73%). Sonication can be applied successfully for the extraction of bioactive compounds from plant materials with high biological activities.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China
| | - Muhammad Ishaq
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China.
| | - Sanabil Yaqoob
- College of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China
| | - Bushra Safdar
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Masooma Munir
- Food Science Research Institute, National Agricultural Research Centre, Islamabad, Pakistan; Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan.
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|