1
|
Espinales C, Baldeón M, Bravo C, Toledo H, Carballo J, Romero-Peña M, Cáceres PJ. Strategies for Healthier Meat Foods: An Overview. Prev Nutr Food Sci 2024; 29:18-30. [PMID: 38576885 PMCID: PMC10987382 DOI: 10.3746/pnf.2024.29.1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 04/06/2024] Open
Abstract
Functional food products remain the focus of current market trends toward healthier nutrition. The consumption of meat-based functional foods has been a topic of interest in food innovation since some of these products generate controversy due to their possible adverse effects on health. However, studies have demonstrated that meat-based functional products are considered an opportunity to improve the nutritional profile of meat products through the addition of biologically valuable components and to meet the specific needs of consumers. In this sense, some strategies and techniques are applied for processing and developing functional meat products, such as modifying carcass composition through feeding, reformulating meat products, and processing conditions. This review focuses on presenting developed and evaluated strategies that allow the production of healthy and functional meat foods, which application has successfully achieved the sensory, nutritional, and technological parameters mainly affected by such application.
Collapse
Affiliation(s)
- Cindy Espinales
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - María Baldeón
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - Cinthya Bravo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - Howard Toledo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - José Carballo
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid 28040, Spain
| | - María Romero-Peña
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
- Saskatchewan Food Industry Development Centre (SFIDC), Saskatoon S7M 5V1, Canada
| | - Patricio J. Cáceres
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| |
Collapse
|
2
|
Olvera-Aguirre G, Piñeiro-Vázquez ÁT, Sanginés-García JR, Sánchez Zárate A, Ochoa-Flores AA, Segura-Campos MR, Vargas-Bello-Pérez E, Chay-Canul AJ. Using plant-based compounds as preservatives for meat products: A review. Heliyon 2023; 9:e17071. [PMID: 37383206 PMCID: PMC10293679 DOI: 10.1016/j.heliyon.2023.e17071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023] Open
Abstract
The susceptibility of meat and meat products (MP) to oxidation and microbial deterioration poses a risk to the nutritional quality, safety, and shelf life of the product. This analysis provides a brief overview of how bioactive compounds (BC) impact meat and MP preservation, and how they can be utilized for preservation purposes. The use of BC, particularly plant-based antioxidants, can reduce the rate of auto-oxidation and microbial growth, thereby extending the shelf life of MP. These BC include polyphenols, flavonoids, tannins, terpenes, alkaloids, saponins, and coumarins, which have antioxidant and antimicrobial properties. Bioactive compounds can act as preservatives and improve the sensory and physicochemical properties of MP when added under appropriate conditions and concentrations. However, the inappropriate extraction, concentration, or addition of BC can also lead to undesired effects. Nonetheless, BC have not been associated with chronic-degenerative diseases and are considered safe for human consumption. MP auto-oxidation leads to the generation of reactive oxygen species, biogenic amines, malonaldehyde (MDA), and metmyoglobin oxidation products, which are detrimental to human health. The addition of BC at a concentration ranging from 0.025 to 2.5% (w/w in powdered or v/w in oil or liquid extracts) can act as a preservative, improving color, texture, and shelf life. The combination of BC with other techniques, such as encapsulation and the use of intelligent films, can further extend the shelf life of MP. In the future, it will be necessary to examine the phytochemical profile of plants that have been used in traditional medicine and cooking for generations to determine their feasibility in MP preservation.
Collapse
Affiliation(s)
| | | | | | | | - Angélica Alejandra Ochoa-Flores
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Km 25. Carretera Villahermosa-Teapa, R/A La Huasteca, CP, 86280, Colonia Centro, Tabasco, Mexico
| | - Maira Rubi Segura-Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Colonia Chuburná de Hidalgo Inn, Mérida, Yucatán, Mexico
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading, RG6 6EU, UK
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, 31453, Mexico
| | - Alfonso Juventino Chay-Canul
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Km 25. Carretera Villahermosa-Teapa, R/A La Huasteca, CP, 86280, Colonia Centro, Tabasco, Mexico
| |
Collapse
|
3
|
Khushboo, Kaushik N, Widell KN, Slizyte R, Kumari A. Effect of Pink Perch Gelatin on Physiochemical, Textural, Sensory, and Storage Characteristics of Ready-to-Cook Low-Fat Chicken Meatballs. Foods 2023; 12:995. [PMID: 36900512 PMCID: PMC10001017 DOI: 10.3390/foods12050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
In recent years consumer demand for low-fat convenience food is increasing rapidly. This study was designed to develop low-fat ready-to-cook (RTC) chicken meatballs using pink perch gelatin. Meatballs were prepared using different concentrations of fish gelatin (3%, 4%, 5%, and 6%). The effect of fish gelatin content on the physico-chemical, textural, cooking, and sensory properties of meatballs was studied. Further, the shelf-life of meatballs was also studied at 4 °C for 15 days and -18 °C for 60 days. The addition of fish gelatin to meatballs decreased the fat content by 67.2% and 79.7% and increased the protein content by 20.1% and 66.4% in comparison to control and Branded Meatballs, respectively. As compared to the Control Meatballs, the addition of fish gelatin also reduced hardness by 26.4% and increased yield and moisture retention in the RTC meatballs by 15.4% and 20.9%, respectively. Sensory analysis suggested that a 5% fish gelatin addition in meatballs has the best acceptability among all tested treatments. Storage study indicated that the addition of fish gelatin to RTC meatballs delayed lipid oxidation during both refrigerated and frozen storage. The results suggested that pink perch gelatin can be used as a fat replacer in chicken meatballs and can potentially increase their shelf-life.
Collapse
Affiliation(s)
- Khushboo
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida 201313, India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| | - Kristina Norne Widell
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Rasa Slizyte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Asha Kumari
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
5
|
Influence of Plant Extract Addition to Marinades on Polycyclic Aromatic Hydrocarbon Formation in Grilled Pork Meat. Molecules 2021; 27:molecules27010175. [PMID: 35011404 PMCID: PMC8746845 DOI: 10.3390/molecules27010175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/02/2022] Open
Abstract
Marinating is one of the most common methods of pre-processing meat. Appropriate selection of marinade ingredients can influence the physicochemical properties of the meat and can reduce the level of polycyclic aromatic hydrocarbons (PAHs) in the final product. The effects of the inclusion of natural plant extracts such as bay leaf (BL), black pepper (BP), turmeric (TU), jalapeno pepper (JP) and tamarind paste (TA) in marinades on the physicochemical properties of grilled pork neck were studied. The addition of spice extracts to marinades increased the proportion of colour components L* and b*. The use of TU, TA, JP, MX and C marinades lowered the hardness and pH of the meat. The highest phenolic compound levels were observed in the case of the mixture of all extracts (MX) and JP marinades, and the highest total antioxidant capacity was exhibited by the BL and MX marinades. The highest PAH content was recorded in the CON marinade (Σ12PAH 98.48 ± 0.81 µg/kg) and the lowest in the JP marinade (4.76 ± 0.08 µg/kg), which had the strongest, statistically significant reducing effect (95% reduction) on PAH levels. Analysis of correlation coefficients showed a relationship between the total antioxidant capacity of the marinades and the PAH content in grilled pork.
Collapse
|
6
|
Estévez M. Critical overview of the use of plant antioxidants in the meat industry: Opportunities, innovative applications and future perspectives. Meat Sci 2021; 181:108610. [PMID: 34147961 DOI: 10.1016/j.meatsci.2021.108610] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
The number of articles devoted to study the effect of "natural antioxidants" on meat systems has remarkably increased in the last 10 years. Yet, a critical review of literature reveals recurrent flaws in regards to the rationale of the application, the experimental design, the characterisation of the plant sources, the discussion of the molecular mechanisms and of the potential benefits. The selection of the appropriate source of these antioxidants and the identification of their bioactive constituents, are essential to understand their mode of action and set effective and safe doses. The methodological approach should also be planned with care as the recorded effects and main conclusions largely depend on the accuracy and specificity of the methods. This article aims to critically review the recent advances in the application of plant antioxidants in meat and meat products and briefly covers current trends of innovative application and future trends.
Collapse
Affiliation(s)
- M Estévez
- Meat and Meat Products Research Institute (IPROCAR), Food Technology, University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|