1
|
Shaaban R, Busi SB, Wilmes P, Guéant JL, Heinken A. Personalized modeling of gut microbiome metabolism throughout the first year of life. COMMUNICATIONS MEDICINE 2024; 4:281. [PMID: 39739091 DOI: 10.1038/s43856-024-00715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Early-life exposures including diet, and the gut microbiome have been proposed to predispose infants towards multifactorial diseases later in life. Delivery via Cesarian section disrupts the establishment of the gut microbiome and has been associated with negative long-term outcomes. Here, we hypothesize that Cesarian section delivery alters not only the composition of the developing infant gut microbiome but also its metabolic capabilities. To test this, we developed a metabolic modeling workflow targeting the infant gut microbiome. METHODS The AGORA2 resource of human microbial genome-scale reconstructions was expanded with a human milk oligosaccharide degradation module. Personalized metabolic modeling of the gut microbiome was performed for a cohort of 20 infants at four time points during the first year of life as well as for 13 maternal gut microbiome samples. RESULTS Here we show that at the earliest stages, the gut microbiomes of infants delivered through Cesarian section are depleted in their metabolic capabilities compared with vaginal delivery. Various metabolites such as fermentation products, human milk oligosaccharide degradation products, and amino acids are depleted in Cesarian section delivery gut microbiomes. Compared with maternal gut microbiomes, infant gut microbiomes produce less butyrate but more L-lactate and are enriched in the potential to synthesize B-vitamins. CONCLUSIONS Our simulations elucidate the metabolic capabilities of the infant gut microbiome demonstrating they are altered in Cesarian section delivery at the earliest time points. Our workflow can be readily applied to other cohorts to evaluate the effect of feeding type, or maternal factors such as diet on host-gut microbiome inactions in early life.
Collapse
Affiliation(s)
- Rola Shaaban
- Inserm UMRS 1256 NGERE, University of Lorraine, Nancy, France
- Nantes University, Nantes, France
| | - Susheel Bhanu Busi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-Louis Guéant
- Inserm UMRS 1256 NGERE, University of Lorraine, Nancy, France
- National Center of Inborn Errors of Metabolism, University Regional Hospital Center of Nancy, Nancy, France
| | - Almut Heinken
- Inserm UMRS 1256 NGERE, University of Lorraine, Nancy, France.
| |
Collapse
|
2
|
Ding L, Weger BD, Liu J, Zhou L, Lim Y, Wang D, Xie Z, Liu J, Ren J, Zheng J, Zhang Q, Yu M, Weger M, Morrison M, Xiao X, Gachon F. Maternal high fat diet induces circadian clock-independent endocrine alterations impacting the metabolism of the offspring. iScience 2024; 27:110343. [PMID: 39045103 PMCID: PMC11263959 DOI: 10.1016/j.isci.2024.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Maternal obesity has long-term effects on offspring metabolic health. Among the potential mechanisms, prior research has indicated potential disruptions in circadian rhythms and gut microbiota in the offspring. To challenge this hypothesis, we implemented a maternal high fat diet regimen before and during pregnancy, followed by a standard diet after birth. Our findings confirm that maternal obesity impacts offspring birth weight and glucose and lipid metabolisms. However, we found minimal impact on circadian rhythms and microbiota that are predominantly driven by the feeding/fasting cycle. Notably, maternal obesity altered rhythmic liver gene expression, affecting mitochondrial function and inflammatory response without disrupting the hepatic circadian clock. These changes could be explained by a masculinization of liver gene expression similar to the changes observed in polycystic ovarian syndrome. Intriguingly, such alterations seem to provide the first-generation offspring with a degree of protection against obesity when exposed to a high fat diet.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Benjamin D. Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100022, China
| | - Yenkai Lim
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Dongmei Wang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ziyan Xie
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark Morrison
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Australian Infectious Diseases Research Centre, St. Lucia, QLD 4072, Australia
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Liu DS, Wang XS, Zhong XH, Cao H, Zhang F. Sexual dimorphism in the gut microbiota and sexual dimorphism in chronic diseases: Association or causation? J Steroid Biochem Mol Biol 2024; 237:106451. [PMID: 38154505 DOI: 10.1016/j.jsbmb.2023.106451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/31/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
Understanding the sexual dimorphism in diseases is essential to investigate the pathogenesis of some chronic diseases (e.g., autoimmune diseases, etc). The gut microbiota has been found to show a notable impact on the pathology of several chronic diseases in recent years. Intriguingly, the composition of the gut microbiota varies between sexes. Here, we reviewed 'facts and fiction' regarding sexual dimorphism in chronic diseases and sexual dimorphism in the gut microbiota respectively. The association and causative relationship between them aiming to elucidate the pathological mechanisms of sexual dimorphism in chronic diseases were further explored. The development of gender-special food products based on the sexual dimorphism in the gut microbiota were recommended, which would be beneficial to facilitating the personalized treatment.
Collapse
Affiliation(s)
- Dong-Song Liu
- Affiliated Hospital of Jiangnan University, Wuxi, China; Nantong University, Nantong, China
| | - Xue-Song Wang
- Affiliated Hospital of Jiangnan University, Wuxi, China; Nantong University, Nantong, China; Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiao-Hui Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hong Cao
- Affiliated Hospital of Jiangnan University, Wuxi, China; Nantong University, Nantong, China; Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Feng Zhang
- Affiliated Hospital of Jiangnan University, Wuxi, China; Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Ding L, Liu J, Zhou L, Zhang Q, Yu M, Xiao X. Maternal High-Fat Diet Results in Long-Term Sex-Specific Alterations to Metabolic and Gut Microbial Diurnal Oscillations in Adult Offspring. Mol Nutr Food Res 2023; 67:e2200753. [PMID: 37334884 DOI: 10.1002/mnfr.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/09/2023] [Indexed: 06/21/2023]
Abstract
SCOPE Circadian rhythms profoundly impact metabolism and the gut microbiota. A maternal high-fat diet (HFD) exerts effects on the metabolic syndrome of adult offspring in a sex-specific manner, the underlying mechanisms, however, remain unclear. METHODS AND RESULTS Female mice are fed an HFD and raise their offspring on a standard chow diet until 24 weeks. The glucose tolerance, insulin sensitivity, and diurnal rhythms of serum metabolic profiles are assessed in male and female adult offspring. Simultaneously, 16S rRNA is applied to characterize gut microbiota diurnal rhythms. The study finds that maternal HFD tends to deteriorate glucose tolerance and impairs insulin sensitivity in male offspring, but not female offspring, which can be associated with the circadian alterations of serum metabolic profiles in male offspring. As expected, maternal HFD sex-specifically alters diurnal rhythms of the gut microbiota, which exhibits putative associations with metabolic profiles in males. CONCLUSIONS The present study identifies the critical role of gut microbiota diurnal rhythms in triggering sex-biased metabolic diurnal rhythms in response to maternal HFD, at least in part. As early life may be a critical window for preventing metabolic diseases, these findings provide the basis for developing chronobiology applications targeting the gut microbiota to combat early metabolic alterations, especially in males.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Smith CJ, Rendina DN, Kingsbury MA, Malacon KE, Nguyen DM, Tran JJ, Devlin BA, Raju RM, Clark MJ, Burgett L, Zhang JH, Cetinbas M, Sadreyev RI, Chen K, Iyer MS, Bilbo SD. Microbial modulation via cross-fostering prevents the effects of pervasive environmental stressors on microglia and social behavior, but not the dopamine system. Mol Psychiatry 2023; 28:2549-2562. [PMID: 37198262 PMCID: PMC10719943 DOI: 10.1038/s41380-023-02108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Environmental toxicant exposure, including air pollution, is increasing worldwide. However, toxicant exposures are not equitably distributed. Rather, low-income and minority communities bear the greatest burden, along with higher levels of psychosocial stress. Both air pollution and maternal stress during pregnancy have been linked to neurodevelopmental disorders such as autism, but biological mechanisms and targets for therapeutic intervention remain poorly understood. We demonstrate that combined prenatal exposure to air pollution (diesel exhaust particles, DEP) and maternal stress (MS) in mice induces social behavior deficits only in male offspring, in line with the male bias in autism. These behavioral deficits are accompanied by changes in microglial morphology and gene expression as well as decreased dopamine receptor expression and dopaminergic fiber input in the nucleus accumbens (NAc). Importantly, the gut-brain axis has been implicated in ASD, and both microglia and the dopamine system are sensitive to the composition of the gut microbiome. In line with this, we find that the composition of the gut microbiome and the structure of the intestinal epithelium are significantly shifted in DEP/MS-exposed males. Excitingly, both the DEP/MS-induced social deficits and microglial alterations in males are prevented by shifting the gut microbiome at birth via a cross-fostering procedure. However, while social deficits in DEP/MS males can be reversed by chemogenetic activation of dopamine neurons in the ventral tegmental area, modulation of the gut microbiome does not impact dopamine endpoints. These findings demonstrate male-specific changes in the gut-brain axis following DEP/MS and suggest that the gut microbiome is an important modulator of both social behavior and microglia.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Danielle N Rendina
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Marcy A Kingsbury
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Lurie Center for Autism, Charlestown, MA, USA
| | - Karen E Malacon
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Dang M Nguyen
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Jessica J Tran
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Lurie Center for Autism, Charlestown, MA, USA
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Ravikiran M Raju
- Department of Pediatrics, Division of Newborn Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
- Massachusetts Institute of Technology, Picower Institute for Learning and Memory, Cambridge, MA, USA
| | - Madeline J Clark
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| | - Lauren Burgett
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Jason H Zhang
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Massachusetts General Hospital, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Chen
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Lurie Center for Autism, Charlestown, MA, USA
| | - Malvika S Iyer
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Lurie Center for Autism, Charlestown, MA, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical School, Durham, NC, USA.
| |
Collapse
|
6
|
Huang P, Cao J, Chen J, Luo Y, Gong X, Wu C, Wang Y. Crosstalk between gut microbiota and renal ischemia/reperfusion injury. Front Cell Infect Microbiol 2022; 12:1015825. [PMID: 36132990 PMCID: PMC9483100 DOI: 10.3389/fcimb.2022.1015825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury and the cause of rapid renal dysfunction and high mortality. In recent years, with the gradual deepening of the understanding of the intestinal flora, exploring renal IRI from the perspective of the intestinal flora has become a research hotspot. It is well known that the intestinal flora plays an important role in maintaining human health, and dysbiosis is the change in the composition and function of the intestinal tract, which in turn causes intestinal barrier dysfunction. Studies have shown that there are significant differences in the composition of intestinal flora before and after renal IRI, and this difference is closely related to the occurrence and development of renal IRI and affects prognosis. In addition, toxins produced by dysregulated gut microbes enter the bloodstream, which in turn exacerbates kidney damage. This article reviews the research progress of intestinal flora and renal IRI, in order to provide new treatment ideas and strategies for renal IRI.
Collapse
Affiliation(s)
- Peng Huang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jianwei Cao
- Department of Microscopic Orthopedics of Hand and Foot, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jingyi Chen
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Jingyi Chen, ; Yu Wang, ; Chengyi Wu,
| | - Yanrong Luo
- Physical examination center, Shiyan Hospital of Integrated Traditional and Western Medicine, Shiyan, China
| | - Xiaofang Gong
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chengyi Wu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Jingyi Chen, ; Yu Wang, ; Chengyi Wu,
| | - Yu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Jingyi Chen, ; Yu Wang, ; Chengyi Wu,
| |
Collapse
|