1
|
Fu H, Chen Z, Teng W, Du Z, Zhang Y, Ye X, Yu Z, Zhang Y, Pi X. Effects of fructooligosaccharides and Saccharomyces boulardii on the compositional structure and metabolism of gut microbiota in students. Microbiol Res 2024; 285:127741. [PMID: 38761487 DOI: 10.1016/j.micres.2024.127741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
Fructooligosaccharides (FOS) are a common prebiotic widely used in functional foods. Meanwhile, Saccharomyces boulardii is a fungal probiotic frequenly used in the clinical treatment of diarrhea. Compared with single use, the combination of prebiotics and probiotics as symbiotics may be more effective in regulating gut microbiota as recently reported in the literature. The present study aimed to investigate the effects of FOS, S. boulardii and their combination on the structure and metabolism of the gut microbiota in healthy primary and secondary school students using an in vitro fermentation model. The results indicated that S. boulardii alone could not effectively regulate the community structure and metabolism of the microbiota. However, both FOS and the combination of FOS and S. boulardii could effectively regulate the microbiota, significantly inhibiting the growth of Escherichia-Shigella and Bacteroides, and controlling the production of the gases including H2S and NH3. In addition, both FOS and the combination could significantly promote the growth of Bifidobacteria and Lactobacillus, lower environmental pH, and enhance several physiological functions related to synthesis and metabolism. Nevertheless, the combination had more unique benefits as it promoted the growth of Lactobacillus, significantly increased CO2 production and enhanced the functional pathways of carbon metabolism and pyruvic acid metabolism. These findings provide guidance for clinical application and a theoretical basis for the development of synbiotic preparations.
Collapse
Affiliation(s)
- Hao Fu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zhixian Chen
- National Key Laboratory of Agricultural Microbiology, Angel Yeast Co., Ltd., Yichang 443003, PR China; The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., Yichang 443003, PR China; Yi Chang Engineering and Technology Research Center of Nutrition and Health Food, Angel Yeast Co., Ltd., Yichang 443003, PR China
| | - Weilin Teng
- Department of infectious Disease Control and Prevention, HangZhou Center for Disease Control and Prevention, Hangzhou 310006, PR China
| | - Zhi Du
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, PR China
| | - Yan Zhang
- National Key Laboratory of Agricultural Microbiology, Angel Yeast Co., Ltd., Yichang 443003, PR China; The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., Yichang 443003, PR China; Yi Chang Engineering and Technology Research Center of Nutrition and Health Food, Angel Yeast Co., Ltd., Yichang 443003, PR China
| | - Xiaoli Ye
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, PR China
| | - Zaichun Yu
- College of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yinjun Zhang
- College of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
2
|
Belnour S, Slater R, Tharmaratnam K, Karl‐Heinz Auth M, Muhammed R, Spray C, Wang D, Zeeshan Ijaz U, Probert C, Allen S. Faecal volatile organic compounds differ according to inflammatory bowel disease sub-type, severity, and response to treatment in paediatric patients. United European Gastroenterol J 2024; 12:780-792. [PMID: 38922802 PMCID: PMC11249809 DOI: 10.1002/ueg2.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Faecal volatile organic compounds (VOCs) differ with disease sub-type and activity in adults with established inflammatory bowel disease (IBD) taking therapy. OBJECTIVE To describe patterns of faecal VOCs in children newly presented with IBD according to disease sub-type, severity, and response to treatment. METHODS Children presenting with suspected IBD were recruited from three UK hospitals. Children in whom IBD was diagnosed were matched with a non-IBD child for age, sex, and recruitment site. Faecal VOCs were characterised by gas chromatography-mass spectrometry at presentation and 3 months later in children with IBD. RESULTS In 132 case/control pairs, median (inter-quartile range) age in IBD was 13.3 years (10.2-14.7) and 38.6% were female. Compared with controls, the mean abundance of 27/62 (43.6%) faecal VOCs was statistically significantly decreased in Crohn's disease (CD), ulcerative colitis (UC) or both especially amongst ketones/diketones, fatty acids, and alcohols (p < 0.05). Short-chain, medium chain, and branched chain fatty acids were markedly reduced in severe colitis (p < 0.05). Despite clinical improvement in many children with IBD, the number and abundance of almost all VOCs did not increase following treatment, suggesting persistent dysbiosis. Oct-1-en-3-ol was increased in CD (p = 0.001) and UC (p = 0.012) compared with controls and decreased following treatment in UC (p = 0.01). In CD, propan-1-ol was significantly greater than controls (p < 0.001) and extensive colitis (p = 0.001) and fell with treatment (p = 0.05). Phenol was significantly greater in CD (p < 0.001) and fell with treatment in both CD (p = 0.02) and UC (p = 0.01). CONCLUSION Characterisation of faecal VOCs in an inception cohort of children with IBD reveals patterns associated with diagnosis, disease activity, and extent. Further work should investigate the relationship between VOCs and the microbiome in IBD and their role in diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Salma Belnour
- Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Slater
- Department of Molecular & Clinical Cancer MedicineInstitute of Systems, Molecular and Integrative BiologyLiverpoolUK
| | | | | | - Rafeeq Muhammed
- Gastroenterology and NutritionBirmingham Children's HospitalBirminghamUK
| | - Christine Spray
- Paediatric GastroenterologyBristol Royal Hospital for ChildrenBristolUK
| | - Duolao Wang
- Department of Clinical SciencesLiverpool School of Tropical MedicineLiverpoolUK
| | | | - Chris Probert
- Department of Molecular & Clinical Cancer MedicineInstitute of Systems, Molecular and Integrative BiologyLiverpoolUK
| | - Stephen Allen
- Paediatric GastroenterologyAlder Hey Children's NHS Foundation TrustLiverpoolUK
- Department of Clinical SciencesLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
3
|
Pierce R, Jan NJ, Kumar P, Middleton J, Petri WA, Marie C. Persistent dysbiosis of duodenal microbiota in patients with controlled pediatric Crohn's disease after resolution of inflammation. Sci Rep 2024; 14:12668. [PMID: 38830904 PMCID: PMC11148174 DOI: 10.1038/s41598-024-63299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
Crohn's disease is an inflammatory condition of the intestine characterized by largely unknown etiology and a relapse remission cycle of disease control. While possible triggers have been identified, research is inconsistent on the precise cause of these relapses, especially in the under-researched pediatric population. We hypothesized that patients in remission would have persistent microbial and inflammatory changes in small intestinal tissue that might trigger relapse. To this end, we analyzed intestinal biopsy samples from six patients with pediatric Crohn's disease in remission and a control group of 16 pediatric patients with no evident pathogenic abnormality. We identified compositional microbiota differences, including decreases in the genera Streptococcus and Actinobacillus as well as increases in Oribacterium and Prevotella in patients with controlled Crohn's disease compared to controls. Further, a histologic analysis found that patients with controlled Crohn's disease had increased epithelial integrity, and decreased intraepithelial lymphocytes compared with controls. Additionally, we observed increased peripheral CD4+ T cells in patients with pediatric Crohn's disease. These results indicate that markers of intestinal inflammation are responsive to Crohn's disease treatment, however the interventions may not resolve the underlying dysbiosis. These findings suggest that persistent dysbiosis may increase vulnerability to relapse of pediatric Crohn's disease. This study used a nested cohort of patients from the Bangladesh Environmental Enteric Dysfunction (BEED) study (ClinicalTrials.gov ID: NCT02812615 Date of first registration: 24/06/2016).
Collapse
Affiliation(s)
- Rebecca Pierce
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ning-Jiun Jan
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jeremy Middleton
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chelsea Marie
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Wang C, Gu Y, Chu Q, Wang X, Ding Y, Qin X, Liu T, Wang S, Liu X, Wang B, Cao H. Gut microbiota and metabolites as predictors of biologics response in inflammatory bowel disease: A comprehensive systematic review. Microbiol Res 2024; 282:127660. [PMID: 38442454 DOI: 10.1016/j.micres.2024.127660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Nonresponse to biologic agents in patients with inflammatory bowel disease (IBD) poses a significant public health burden, and the prediction of response to biologics offers valuable insights for IBD management. Given the pivotal role of gut microbiota and their endogenous metabolites in IBD, we conducted a systematic review to investigate the potential of fecal microbiota and mucosal microbiota and endogenous metabolomic markers as predictors for biotherapy response in IBD patients. A total of 38 studies were included in the review. Following anti-TNF-α treatment, the bacterial community characteristics of IBD patients exhibited a tendency to resemble those observed in healthy controls, indicating an improved clinical response. The levels of endogenous metabolites butyrate and deoxycholic acid were significantly associated with clinical remission following anti-TNF-α therapy. IBD patients who responded well to vedolizumab treatment had higher levels of specific bacteria that produce butyrate, along with increased levels of metabolites such as butyrate, branched-chain amino acids and acetamide following vedolizumab treatment. Crohn's disease patients who responded positively to ustekinumab treatment showed higher levels of Faecalibacterium and lower levels of Escherichia/Shigella. In conclusion, fecal microbiota and mucosal microbiota as well as their endogenous metabolites could provide a predictive tool for assessing the response of IBD patients to various biological agents and serve as a valuable reference for precise drug selection in clinical IBD patients.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiao Chu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
5
|
Jiménez-Cortegana C, Palomares F, Alba G, Santa-María C, de la Cruz-Merino L, Sánchez-Margalet V, López-Enríquez S. Dendritic cells: the yin and yang in disease progression. Front Immunol 2024; 14:1321051. [PMID: 38239364 PMCID: PMC10794555 DOI: 10.3389/fimmu.2023.1321051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Dendritic cells (DCs) are antigen presenting cells that link innate and adaptive immunity. DCs have been historically considered as the most effective and potent cell population to capture, process and present antigens to activate naïve T cells and originate favorable immune responses in many diseases, such as cancer. However, in the last decades, it has been observed that DCs not only promote beneficial responses, but also drive the initiation and progression of some pathologies, including inflammatory bowel disease (IBD). In line with those notions, different therapeutic approaches have been tested to enhance or impair the concentration and role of the different DC subsets. The blockade of inhibitory pathways to promote DCs or DC-based vaccines have been successfully assessed in cancer, whereas the targeting of DCs to inhibit their functionality has proved to be favorable in IBD. In this review, we (a) described the general role of DCs, (b) explained the DC subsets and their role in immunogenicity, (c) analyzed the role of DCs in cancer and therapeutic approaches to promote immunogenic DCs and (d) analyzed the role of DCs in IBD and therapeutic approaches to reduced DC-induced inflammation. Therefore, we aimed to highlight the "yin-yang" role of DCs to improve the understand of this type of cells in disease progression.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Gonzalo Alba
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Consuelo Santa-María
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Clinical Oncology Dept. Medicine Department, University of Seville, Virgen Macarena University Hospital, Seville, Spain
| | - Victor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Soledad López-Enríquez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|