1
|
Li P, Zeng BH, He SW, Liu B, Chen CZ, Feng JX, Liu L, Li ZH. Sex-specific effects of triphenyltin on gut microbiota and intergenerational effects in marine medaka (Oryzias melastigma). JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136924. [PMID: 39709808 DOI: 10.1016/j.jhazmat.2024.136924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
In this study, a mixed model was applied to the marine medaka to investigate the intergenerational effects of parental exposure to Triphenyltin (TPT) and the subsequent perturbations in parental gut microbiota on the gut microbiota of offspring. In addition, "microgenderome" has been focused on elucidating the different responses of males and females to environmental stress. The results indicated that TPT exhibited androgenic effects and long-term toxicological consequences, influencing the internal steroid hormone levels of the offspring and leading to their abnormal growth and development. Furthermore, the "microgenderome" has been observed in fish, which resulted in sex-specific responses among females and males when exposed to TPT. The effects of parental TPT exposure on offspring also varied by sex; specifically, it disrupted the intestinal microenvironment in female offspring, creating selective pressure on gut microbiota. In contrast, the male gut microbiota exhibited greater sensitivity to environmental perturbations, allowing rapid community interactions to achieve a relatively stable state. These findings suggest that TPT poses significant long-term toxicological effects that warrant further attention and management. Moreover, the identification of the "microgenderome" phenomenon in fish may provide new insights into gut microbiota disruption and its functional implications.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Bian-Hao Zeng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shu-Wen He
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | | | - Jian-Xue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
2
|
Liu F, Jia Y, Zhao L, Xiao LN, Cheng X, Xiao Y, Zhang Y, Zhang Y, Yu H, Deng QE, Zhang Y, Feng Y, Wang J, Gao Y, Zhang X, Geng Y. Escin ameliorates CUMS-induced depressive-like behavior via BDNF/TrkB/CREB and TLR4/MyD88/NF-κB signaling pathways in rats. Eur J Pharmacol 2024; 984:177063. [PMID: 39426465 DOI: 10.1016/j.ejphar.2024.177063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder associated with brain inflammation and neuronal damage. Derived from the Aesculus chinensis Bunge fruit, escin has shown anti-inflammatory and neuroprotective effects. However, its potential as a treatment for MDD is unclear. This study investigates the antidepressant properties of escin using in vivo experimentation. The chronic unpredictable mild stress (CUMS) model was used to analyze the potential antidepressant effects and underlying mechanisms of escin. Wistar rats were exposed to CUMS for 35 consecutive days to induce MDD. The rats were then given either escin (1, 3, and 10 mg/kg) or fluoxetine (2 mg/kg) on a daily basis. Notably, escin significantly alleviated the depressive behaviors induced by CUMS, as evaluated through a series of behavioral assessments. Moreover, escin administration reduced TNF-α, IL-1β, and IL-6 levels in the hippocampus. It also decreased serum adrenal cortical hormone (ACTH) and corticosterone (CORT) levels while increasing 5-HT and Brain-derived neurotrophic factor (BDNF) levels in the CUMS rats, as measured by the enzyme-linked immunosorbent assay (ELISA). Pathological changes in the hippocampal regions were identified through Nissl staining, and Western blotting was used to quantify the protein levels of BDNF, TrkB, CREB, TLR4, MyD88, and NF-κB. Escin mitigated neuronal injury, elevated TrkB, BDNF, and CREB, and reduced TLR4, MyD88, and NF-κB protein levels in CUMS rats. The data from this study suggest that escin holds the potential for alleviating depression-like symptoms induced by CUMS. This effect may be mediated through the modulation of two signaling pathways, BDNF/TrkB/CREB and TLR4/MyD88/NF-κB.
Collapse
Affiliation(s)
- Fengjiao Liu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Yaxin Jia
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Liwei Zhao
- Science and Technology Office, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Li-Na Xiao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Xizhen Cheng
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yingying Xiao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Ying Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Yuling Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Huimin Yu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Qiao-En Deng
- The Eighth Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050081, China
| | - Yuanyuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China
| | - Yimeng Feng
- College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Junfang Wang
- College of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yonggang Gao
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China; Department of Preventive Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, Hebei, 050091, China.
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, Hebei, 050091, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050091, China.
| | - Yunyun Geng
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China; Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, Hebei, 050091, China; Heibei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Shijiazhuang, Hebei, 050091, China.
| |
Collapse
|
3
|
Liufu S, Wang K, Chen B, Chen W, Liu X, Wen S, Li X, Xu D, Ma H. Effect of host breeds on gut microbiome and fecal metabolome in commercial pigs. BMC Vet Res 2024; 20:458. [PMID: 39390513 PMCID: PMC11465751 DOI: 10.1186/s12917-024-04308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Gut microbial composition and its metabolites are crucial for livestock production performance. Metabolite profiles from autopsied biospecimens provide vital information on the basic mechanisms that affect the overall health and production traits in livestock animals. However, the role of the host breed in the gut microbiome and fecal metabolome of commercial pigs remains unclear. In this work, differences in microbiota composition among three commercial pig breeds Duroc, Yorkshire, and Landrace were measured by 16S rRNA gene sequencing. Fecal metabolite compositions of the three pig breeds were detected using untargeted metabolomics. RESULTS There were significant differences in the gut microbiomes of the three species, indicating that host breed affects the diversity and structure of gut microbiota. Several breed-associated microorganisms were identified at different taxonomic levels. Notely, most microbial taxa were annotated as Lactobacillacea, Muribaculaceae, and Oscillospiraceae. Several bacteria, including Lactobacillus, Subdoligranulum, Faecalibacterium, Oscillospira, Oscillospiraceae_UCG-002, and Christensenellaceae_R-7_group, could be considered as biomarkers for improving the backfat thickness (BF) for commercial pigs. Additionally, KEGG analysis of gut microbiota further revealed that arginine biosynthesis, pyruvate metabolism, and fatty acid biosynthesis varied greatly among pig breeds. Multiple gut bacterial metabolites (e.g., spermidine, estradiol, and palmitic acid) were identified as breed-associated. Mediation analysis ultimately revealed the cross-talk among gut microbiota, metabolites, and BF thickness, proclaiming that the microbial and metabolic biomarkers identified in this study could be used as biomarkers for improving BF phenotype. CONCLUSIONS This work provides vital insights into breed effects on gut microbiota and metabolite compositions of commercial pigs and uncovers potential biomarkers that are significant for pig breed improvement.
Collapse
Affiliation(s)
- Sui Liufu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Kaiming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Bohe Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Wenwu Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Sheng Wen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Xintong Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Dong Xu
- Department of Biological and Environmental Engineering, Yueyang Vocational Technical College, Yueyang, PR, 414000, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China.
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha, PR, 410128, China.
- Yuelushan Laboratory, Changsha, PR, 410128, China.
| |
Collapse
|
4
|
Mao Z, Zhang J, Guo L, Wang X, Zhu Z, Miao M. Therapeutic approaches targeting the gut microbiota in ischemic stroke: current advances and future directions. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:321-328. [PMID: 39364121 PMCID: PMC11444859 DOI: 10.12938/bmfh.2024-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 10/05/2024]
Abstract
Ischemic stroke (IS) is the predominant form of stroke pathology, and its clinical management remains constrained by therapeutic time frame. The gut microbiota (GM), comprising a multitude of bacterial and archaeal cells, surpasses the human cell count by approximately tenfold and significantly contributes to the human organism's growth, development, and overall well-being. The microbiota-gut-brain axis (MGBA) in recent years has established a strong association between gut microbes and the brain, demonstrating their intricate involvement in the progression of IS. The regulation of IS by the GM, encompassing changes in composition, abundance, and distribution, is multifaceted, involving neurological, endocrine, immunological, and metabolic mechanisms. This comprehensive understanding offers novel insights into the therapeutic approaches for IS. The objective of this paper is to examine the mechanisms of interaction between the GM and IS in recent years, assess the therapeutic effects of the GM on IS through various interventions, such as dietary modifications, probiotics, fecal microbiota transplantation, and antibiotics, and offer insights into the potential clinical application of the GM in stroke treatment.
Collapse
Affiliation(s)
- Zhiguo Mao
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Jinying Zhang
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Lin Guo
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| | - Xiaoran Wang
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
| | - Zhengwang Zhu
- The First Clinical Medical College, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
| | - Mingsan Miao
- Department of Pharmacology, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, No. 156 Jinshui East Road, Zhengdong New District, Zhengzhou, Henan Province, China
| |
Collapse
|
5
|
Sinder SB, Sharma SV, Shirvaikar IS, Pradhyumnan H, Patel SH, Cabeda Diaz I, Perez GG, Bramlett HM, Raval AP. Impact of menopause-associated frailty on traumatic brain injury. Neurochem Int 2024; 176:105741. [PMID: 38621511 DOI: 10.1016/j.neuint.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Navigating menopause involves traversing a complex terrain of hormonal changes that extend far beyond reproductive consequences. Menopausal transition is characterized by a decrease in estradiol-17β (E2), and the impact of menopause resonates not only in the reproductive system but also through the central nervous system, musculoskeletal, and gastrointestinal domains. As women undergo menopausal transition, they become more susceptible to frailty, amplifying the risk and severity of injuries, including traumatic brain injury (TBI). Menopause triggers a cascade of changes leading to a decline in muscle mass, accompanied by diminished tone and excitability, thereby restricting the availability of irisin, a crucial hormone derived from muscles. Concurrently, bone mass undergoes reduction, culminating in the onset of osteoporosis and altering the dynamics of osteocalcin, a hormone originating from bones. The diminishing levels of E2 during menopause extend their influence on the gut microbiota, resulting in a reduction in the availability of tyrosine, tryptophan, and serotonin metabolites, affecting neurotransmitter synthesis and function. Understanding the interplay between menopause, frailty, E2 decline, and the intricate metabolisms of bone, gut, and muscle is imperative when unraveling the nuances of TBI after menopause. The current review underscores the significance of accounting for menopause-associated frailty in the incidence and consequences of TBI. The review also explores potential mechanisms to enhance gut, bone, and muscle health in menopausal women, aiming to mitigate frailty and improve TBI outcomes.
Collapse
Affiliation(s)
- Sophie B Sinder
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sabrina V Sharma
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Isha S Shirvaikar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Indy Cabeda Diaz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
6
|
Banerjee A, Mohapatra S, McCullough LD. Stroke and the Microbiome. Stroke 2024; 55:762-764. [PMID: 38258571 PMCID: PMC10922418 DOI: 10.1161/strokeaha.123.044249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Affiliation(s)
- Anik Banerjee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77225
| | - Swati Mohapatra
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77225
| | - Louise D. McCullough
- Corresponding author: Louise D McCullough, Correspondence to: Louise McCullough, Department of Neurology, University of Texas McGovern Medical School, 6431 Fannin St, Room 7044, Houston, TX 77030.
| |
Collapse
|