1
|
A role of the 53BP1 protein in genome protection: structural and functional characteristics of 53BP1-dependent DNA repair. Aging (Albany NY) 2020; 11:2488-2511. [PMID: 30996128 PMCID: PMC6519998 DOI: 10.18632/aging.101917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Nuclear architecture plays a significant role in DNA repair mechanisms. It is evident that proteins involved in DNA repair are compartmentalized in not only spontaneously occurring DNA lesions or ionizing radiation-induced foci (IRIF), but a specific clustering of these proteins can also be observed within the whole cell nucleus. For example, 53BP1-positive and BRCA1-positive DNA repair foci decorate chromocenters and can appear close to nuclear speckles. Both 53BP1 and BRCA1 are well-described factors that play an essential role in double-strand break (DSB) repair. These proteins are members of two protein complexes: 53BP1-RIF1-PTIP and BRCA1-CtIP, which make a “decision” determining whether canonical nonhomologous end joining (NHEJ) or homology-directed repair (HDR) is activated. It is generally accepted that 53BP1 mediates the NHEJ mechanism, while HDR is activated via a BRCA1-dependent signaling pathway. Interestingly, the 53BP1 protein appears relatively quickly at DSB sites, while BRCA1 is functional at later stages of DNA repair, as soon as the Mre11-Rad50-Nbs1 complex is recruited to the DNA lesions. A function of the 53BP1 protein is also linked to a specific histone signature, including phosphorylation of histone H2AX (γH2AX) or methylation of histone H4 at the lysine 20 position (H4K20me); therefore, we also discuss an epigenetic landscape of 53BP1-positive DNA lesions.
Collapse
|
2
|
Svobodová Kovaříková A, Stixová L, Kovařík A, Komůrková D, Legartová S, Fagherazzi P, Bártová E. N 6-Adenosine Methylation in RNA and a Reduced m 3G/TMG Level in Non-Coding RNAs Appear at Microirradiation-Induced DNA Lesions. Cells 2020; 9:E360. [PMID: 32033081 PMCID: PMC7072662 DOI: 10.3390/cells9020360] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
The DNA damage response is mediated by both DNA repair proteins and epigenetic markers. Here, we observe that N6-methyladenosine (m6A), a mark of the epitranscriptome, was common in RNAs accumulated at UV-damaged chromatin; however, inhibitors of RNA polymerases I and II did not affect the m6A RNA level at the irradiated genomic regions. After genome injury, m6A RNAs either diffused to the damaged chromatin or appeared at the lesions enzymatically. DNA damage did not change the levels of METTL3 and METTL14 methyltransferases. In a subset of irradiated cells, only the METTL16 enzyme, responsible for m6A in non-coding RNAs as well as for splicing regulation, was recruited to microirradiated sites. Importantly, the levels of the studied splicing factors were not changed by UVA light. Overall, if the appearance of m6A RNAs at DNA lesions is regulated enzymatically, this process must be mediated via the coregulatory function of METTL-like enzymes. This event is additionally accompanied by radiation-induced depletion of 2,2,7-methylguanosine (m3G/TMG) in RNA. Moreover, UV-irradiation also decreases the global cellular level of N1-methyladenosine (m1A) in RNAs. Based on these results, we prefer a model in which m6A RNAs rapidly respond to radiation-induced stress and diffuse to the damaged sites. The level of both (m1A) RNAs and m3G/TMG in RNAs is reduced as a consequence of DNA damage, recognized by the nucleotide excision repair mechanism.
Collapse
Affiliation(s)
- Alena Svobodová Kovaříková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic; (A.S.K.); (L.S.); (A.K.); (D.K.); (S.L.); (P.F.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lenka Stixová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic; (A.S.K.); (L.S.); (A.K.); (D.K.); (S.L.); (P.F.)
| | - Aleš Kovařík
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic; (A.S.K.); (L.S.); (A.K.); (D.K.); (S.L.); (P.F.)
| | - Denisa Komůrková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic; (A.S.K.); (L.S.); (A.K.); (D.K.); (S.L.); (P.F.)
| | - Soňa Legartová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic; (A.S.K.); (L.S.); (A.K.); (D.K.); (S.L.); (P.F.)
| | - Paolo Fagherazzi
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic; (A.S.K.); (L.S.); (A.K.); (D.K.); (S.L.); (P.F.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic; (A.S.K.); (L.S.); (A.K.); (D.K.); (S.L.); (P.F.)
| |
Collapse
|
3
|
Stixová L, Komůrková D, Svobodová Kovaříková A, Bártová E. UVA irradiation strengthened an interaction between UBF1/2 proteins and H4K20 di-/tri-methylation. Chromosome Res 2019; 27:41-55. [PMID: 30610403 DOI: 10.1007/s10577-018-9596-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/29/2022]
Abstract
Repair of ribosomal DNA (rDNA) is a very important nuclear process due to the most active transcription of ribosomal genes. Proper repair of rDNA is required for physiological biogenesis of ribosomes. Here, we analyzed the epigenetics of the DNA damage response in a nucleolar compartment, thus in the ribosomal genes studied in nonirradiated and UVA-irradiated mouse embryonic fibroblasts (MEFs). We found that the promoter of ribosomal genes is not abundant on H4K20me2, but it is densely occupied by H4K20me3. Ribosomal genes, regulated via UBF1/2 proteins, were characterized by an interaction between UBF1/2 and H4K20me2/me3. This interaction was strengthened by UVA irradiation that additionally causes a focal accumulation of H4K20me3 in the nucleolus. No interaction has been found between UBF1/2 and H3K9me3. Interestingly, UVA irradiation decreases the levels of H3K9me3 and H4K20me3 at 28S rDNA. Altogether, the UVA light affects the epigenetic status of ribosomal genes at 28S rDNA and strengthens an interaction between UBF1/2 proteins and H4K20me2/me3.
Collapse
Affiliation(s)
- Lenka Stixová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Denisa Komůrková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Alena Svobodová Kovaříková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-612 65, Brno, Czech Republic.
| |
Collapse
|
4
|
Legartová S, Suchánková J, Krejčí J, Kovaříková A, Bártová E. Advanced Confocal Microscopy Techniques to Study Protein-protein Interactions and Kinetics at DNA Lesions. J Vis Exp 2017. [PMID: 29155761 DOI: 10.3791/55999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Local microirradiation with lasers represents a useful tool for studies of DNA-repair-related processes in live cells. Here, we describe a methodological approach to analyzing protein kinetics at DNA lesions over time or protein-protein interactions on locally microirradiated chromatin. We also show how to recognize individual phases of the cell cycle using the Fucci cellular system to study cell-cycle-dependent protein kinetics at DNA lesions. A methodological description of the use of two UV lasers (355 nm and 405 nm) to induce different types of DNA damage is also presented. Only the cells microirradiated by the 405-nm diode laser proceeded through mitosis normally and were devoid of cyclobutane pyrimidine dimers (CPDs). We also show how microirradiated cells can be fixed at a given time point to perform immunodetection of the endogenous proteins of interest. For the DNA repair studies, we additionally describe the use of biophysical methods including FRAP (Fluorescence Recovery After Photobleaching) and FLIM (Fluorescence Lifetime Imaging Microscopy) in cells with spontaneously occurring DNA damage foci. We also show an application of FLIM-FRET (Fluorescence Resonance Energy Transfer) in experimental studies of protein-protein interactions.
Collapse
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics of the Czech Academy of Sciences
| | | | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences
| | | | - Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences;
| |
Collapse
|
5
|
Bártová E, Malyšková B, Komůrková D, Legartová S, Suchánková J, Krejčí J, Kozubek S. Function of heterochromatin protein 1 during DNA repair. PROTOPLASMA 2017; 254:1233-1240. [PMID: 28236007 DOI: 10.1007/s00709-017-1090-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/14/2017] [Indexed: 05/04/2023]
Abstract
This review focuses on the function of heterochromatin protein HP1 in response to DNA damage. We specifically outline the regulatory mechanisms in which HP1 and its interacting partners are involved. HP1 protein subtypes (HP1α, HP1β, and HP1γ) are the main components of constitutive heterochromatin, and HP1α and HP1β in particular are responsible for heterochromatin maintenance. The recruitment of these proteins to DNA lesions is also important from the perspective of proper DNA repair mechanisms. For example, HP1α is necessary for the binding of the main DNA damage-related protein 53BP1 at DNA repair foci, which are positive not only for the HP1α protein but also for the RAD51 protein, a component of DNA repair machinery. The HP1β protein also appears in monomeric form in DNA lesions together with the evolutionarily well-conserved protein called proliferating cell nuclear antigen (PCNA). The role of HP1 in DNA lesions is also mediated via the Kap1 transcription repressor. Taken together, these results indicate that the function of HP1 after DNA injury depends strongly on the kinetics of other DNA repair-related factors and their post-translational modifications, such as the phosphorylation of Kap-1.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic.
| | - Barbora Malyšková
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Denisa Komůrková
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Jana Suchánková
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
6
|
Franek M, Kovaříková A, Bártová E, Kozubek S. Nucleolar Reorganization Upon Site-Specific Double-Strand Break Induction. J Histochem Cytochem 2016; 64:669-686. [PMID: 27680669 PMCID: PMC5084524 DOI: 10.1369/0022155416668505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/09/2016] [Indexed: 12/20/2022] Open
Abstract
DNA damage response (DDR) in ribosomal genes and mechanisms of DNA repair in embryonic stem cells (ESCs) are less explored nuclear events. DDR in ESCs should be unique due to their high proliferation rate, expression of pluripotency factors, and specific chromatin signature. Given short population doubling time and fast progress through G1 phase, ESCs require a sustained production of rRNA, which leads to the formation of large and prominent nucleoli. Although transcription of rRNA in the nucleolus is relatively well understood, little is known about DDR in this nuclear compartment. Here, we directed formation of double-strand breaks in rRNA genes with I- PpoI endonuclease, and we studied nucleolar morphology, DDR, and chromatin modifications. We observed a pronounced formation of I- PpoI-induced nucleolar caps, positive on BRCA1, NBS1, MDC1, γH2AX, and UBF1 proteins. We showed interaction of nucleolar protein TCOF1 with HDAC1 and TCOF1 with CARM1 after DNA injury. Moreover, H3R17me2a modification mediated by CARM1 was found in I- PpoI-induced nucleolar caps. Finally, we report that heterochromatin protein 1 is not involved in DNA repair of nucleolar caps.
Collapse
Affiliation(s)
- Michal Franek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic (MF, AK, EB, SK)
| | | | | | | |
Collapse
|
7
|
Legartová S, Sehnalová P, Malyšková B, Küntziger T, Collas P, Cmarko D, Raška I, Sorokin DV, Kozubek S, Bártová E. Localized Movement and Levels of 53BP1 Protein Are Changed by γ-irradiation in PML Deficient Cells. J Cell Biochem 2016; 117:2583-96. [PMID: 27526954 DOI: 10.1002/jcb.25551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/23/2016] [Indexed: 01/07/2023]
Abstract
We studied epigenetics, distribution pattern, kinetics, and diffusion of proteins recruited to spontaneous and γ-radiation-induced DNA lesions. We showed that PML deficiency leads to an increased number of DNA lesions, which was accompanied by changes in histone signature. In PML wt cells, we observed two mobile fractions of 53BP1 protein with distinct diffusion in spontaneous lesions. These protein fractions were not detected in PML-deficient cells, characterized by slow-diffusion of 53BP1. Single particle tracking analysis revealed limited local motion of 53BP1 foci in PML double null cells and local motion 53BP1 foci was even more reduced after γ-irradiation. However, radiation did not change co-localization between 53BP1 nuclear bodies and interchromatin granule-associated zones (IGAZs), nuclear speckles, or chromocenters. This newly observed interaction pattern imply that 53BP1 protein could be a part of not only DNA repair, but also process mediated via components accumulated in IGAZs, nuclear speckles, or paraspeckles. Together, PML deficiency affected local motion of 53BP1 nuclear bodies and changed composition and a number of irradiation-induced foci. J. Cell. Biochem. 117: 2583-2596, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Barbora Malyšková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | | | - Philippe Collas
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Norwegian Center for Stem Cell Research, Oslo, Norway
| | - Dušan Cmarko
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, Prague, 128 01, Czech Republic
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, Prague, 128 01, Czech Republic
| | - Dmitry V Sorokin
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic.,Faculty of Informatics, Masaryk University, Botanická 68a, Brno, 602 00, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, Brno, 612 65, Czech Republic. .,Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, Prague, 128 01, Czech Republic.
| |
Collapse
|
8
|
Franek M, Suchánková J, Sehnalová P, Krejčí J, Legartová S, Kozubek S, Večeřa J, Sorokin DV, Bártová E. Advanced Image Acquisition and Analytical Techniques for Studies of Living Cells and Tissue Sections. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:326-341. [PMID: 26903193 DOI: 10.1017/s1431927616000052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Studies on fixed samples or genome-wide analyses of nuclear processes are useful for generating snapshots of a cell population at a particular time point. However, these experimental approaches do not provide information at the single-cell level. Genome-wide studies cannot assess variability between individual cells that are cultured in vitro or originate from different pathological stages. Immunohistochemistry and immunofluorescence are fundamental experimental approaches in clinical laboratories and are also widely used in basic research. However, the fixation procedure may generate artifacts and prevents monitoring of the dynamics of nuclear processes. Therefore, live-cell imaging is critical for studying the kinetics of basic nuclear events, such as DNA replication, transcription, splicing, and DNA repair. This review is focused on the advanced microscopy analyses of the cells, with a particular focus on live cells. We note some methodological innovations and new options for microscope systems that can also be used to study tissue sections. Cornerstone methods for the biophysical research of living cells, such as fluorescence recovery after photobleaching and fluorescence resonance energy transfer, are also discussed, as are studies on the effects of radiation at the individual cellular level.
Collapse
Affiliation(s)
- Michal Franek
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Jana Suchánková
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Jana Krejčí
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Soňa Legartová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | | | | | - Eva Bártová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| |
Collapse
|
9
|
Suchánková J, Kozubek S, Legartová S, Sehnalová P, Küntziger T, Bártová E. Distinct kinetics of DNA repair protein accumulation at DNA lesions and cell cycle-dependent formation of γH2AX- and NBS1-positive repair foci. Biol Cell 2015; 107:440-54. [DOI: 10.1111/boc.201500050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/13/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Jana Suchánková
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 the Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 the Czech Republic
| | - Soňa Legartová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 the Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 the Czech Republic
| | | | - Eva Bártová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 the Czech Republic
| |
Collapse
|