1
|
Kristó I, Kovács Z, Szabó A, Borkúti P, Gráf A, Sánta ÁT, Pettkó-Szandtner A, Ábrahám E, Honti V, Lipinszki Z, Vilmos P. Moesin contributes to heat shock gene response through direct binding to the Med15 subunit of the Mediator complex in the nucleus. Open Biol 2024; 14:240110. [PMID: 39353569 PMCID: PMC11444770 DOI: 10.1098/rsob.240110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 10/04/2024] Open
Abstract
The members of the evolutionary conserved actin-binding Ezrin, Radixin and Moesin (ERM) protein family are involved in numerous key cellular processes in the cytoplasm. In the last decades, ERM proteins, like actin and other cytoskeletal components, have also been shown to be functional components of the nucleus; however, the molecular mechanism behind their nuclear activities remained unclear. Therefore, our primary aim was to identify the nuclear protein interactome of the single Drosophila ERM protein, Moesin. We demonstrate that Moesin directly interacts with the Mediator complex through direct binding to its Med15 subunit, and the presence of Moesin at the regulatory regions of the Hsp70Ab heat shock gene was found to be Med15-dependent. Both Moesin and Med15 bind to heat shock factor (Hsf), and they are required for proper Hsp gene expression under physiological conditions. Moreover, we confirmed that Moesin, Med15 and Hsf are able to bind the monomeric form of actin and together they form a complex in the nucleus. These results elucidate a mechanism by which ERMs function within the nucleus. Finally, we present the direct interaction of the human orthologues of Drosophila Moesin and Med15, which highlights the evolutionary significance of our finding.
Collapse
Affiliation(s)
- Ildikó Kristó
- Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Zoltán Kovács
- Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Anikó Szabó
- Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Péter Borkúti
- Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Alexandra Gráf
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Ádám Tamás Sánta
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged , Szeged, Hungary
- Delta Bio 2000 Ltd. , Szeged 6726, Hungary
| | | | - Edit Ábrahám
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre , Szeged, Hungary
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Viktor Honti
- Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Zoltán Lipinszki
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre , Szeged, Hungary
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| | - Péter Vilmos
- Institute of Genetics, HUN-REN Biological Research Centre , Szeged, Hungary
| |
Collapse
|
2
|
Inoue AH, Domingues PF, Serpeloni M, Hiraiwa PM, Vidal NM, Butterfield ER, Del Pino RC, Ludwig A, Boehm C, Field MC, Ávila AR. Proteomics Uncovers Novel Components of an Interactive Protein Network Supporting RNA Export in Trypanosomes. Mol Cell Proteomics 2022; 21:100208. [PMID: 35091090 PMCID: PMC8938319 DOI: 10.1016/j.mcpro.2022.100208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/03/2022] Open
Abstract
In trypanosomatids, transcription is polycistronic and all mRNAs are processed by trans-splicing, with export mediated by noncanonical mechanisms. Although mRNA export is central to gene regulation and expression, few orthologs of proteins involved in mRNA export in higher eukaryotes are detectable in trypanosome genomes, necessitating direct identification of protein components. We previously described conserved mRNA export pathway components in Trypanosoma cruzi, including orthologs of Sub2, a component of the TREX complex, and eIF4AIII (previously Hel45), a core component of the exon junction complex (EJC). Here, we searched for protein interactors of both proteins using cryomilling and mass spectrometry. Significant overlap between TcSub2 and TceIF4AIII-interacting protein cohorts suggests that both proteins associate with similar machinery. We identified several interactions with conserved core components of the EJC and multiple additional complexes, together with proteins specific to trypanosomatids. Additional immunoisolations of kinetoplastid-specific proteins both validated and extended the superinteractome, which is capable of supporting RNA processing from splicing through to nuclear export and cytoplasmic events. We also suggest that only proteomics is powerful enough to uncover the high connectivity between multiple aspects of mRNA metabolism and to uncover kinetoplastid-specific components that create a unique amalgam to support trypanosome mRNA maturation.
Collapse
Affiliation(s)
| | | | | | | | - Newton Medeiros Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Adriana Ludwig
- Instituto Carlos Chagas, FIOCRUZ, Curitiba, Paraná, Brazil
| | - Cordula Boehm
- School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, UK; Biology Centre, University of South Bohemia, České Budějovice, Czech Republic.
| | | |
Collapse
|
3
|
De Magistris P. The Great Escape: mRNA Export through the Nuclear Pore Complex. Int J Mol Sci 2021; 22:ijms222111767. [PMID: 34769195 PMCID: PMC8583845 DOI: 10.3390/ijms222111767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Nuclear export of messenger RNA (mRNA) through the nuclear pore complex (NPC) is an indispensable step to ensure protein translation in the cytoplasm of eukaryotic cells. mRNA is not translocated on its own, but it forms ribonuclear particles (mRNPs) in association with proteins that are crucial for its metabolism, some of which; like Mex67/MTR2-NXF1/NXT1; are key players for its translocation to the cytoplasm. In this review, I will summarize our current body of knowledge on the basic characteristics of mRNA export through the NPC. To be granted passage, the mRNP cargo needs to bind transport receptors, which facilitate the nuclear export. During NPC transport, mRNPs undergo compositional and conformational changes. The interactions between mRNP and the central channel of NPC are described; together with the multiple quality control steps that mRNPs undergo at the different rings of the NPC to ensure only proper export of mature transcripts to the cytoplasm. I conclude by mentioning new opportunities that arise from bottom up approaches for a mechanistic understanding of nuclear export.
Collapse
|
4
|
Coordination of transcription, processing, and export of highly expressed RNAs by distinct biomolecular condensates. Emerg Top Life Sci 2021; 4:281-291. [PMID: 32338276 PMCID: PMC7733674 DOI: 10.1042/etls20190160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
Genes under control of super-enhancers are expressed at extremely high levels and are frequently associated with nuclear speckles. Recent data suggest that the high concentration of unphosphorylated RNA polymerase II (Pol II) and Mediator recruited to super-enhancers create phase-separated condensates. Transcription initiates within or at the surface of these phase-separated droplets and the phosphorylation of Pol II, associated with transcription initiation and elongation, dissociates Pol II from these domains leading to engagement with nuclear speckles, which are enriched with RNA processing factors. The transitioning of Pol II from transcription initiation domains to RNA processing domains effectively co-ordinates transcription and processing of highly expressed RNAs which are then rapidly exported into the cytoplasm.
Collapse
|
5
|
Global transcriptional downregulation of TREX and nuclear trafficking machinery as pan-senescence phenomena: evidence from human cells and tissues. Exp Mol Med 2020; 52:1351-1359. [PMID: 32859952 PMCID: PMC8080647 DOI: 10.1038/s12276-020-00490-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Nucleocytoplasmic trafficking (NCT) of macromolecules is a fundamental process in eukaryotes that requires tight controls to maintain proper cell functions. Downregulation of the classical NCT pathway in senescent cells has been reported. However, whether this is a hallmark that exists across all types of cellular senescence remains unknown, and whether the mRNA export machinery is altered during senescence has not been demonstrated. Here, we show that the global transcriptomic downregulation of both the TREX (transcription-export) machinery and classical NLS-dependent protein transport machinery is a hallmark of varying types of senescence. A gene set-based approach using 25 different studies showed that the TREX-NCT gene set displays distinct common downregulated patterns in senescent cells versus its expression in their nonsenescent counterparts regardless of the senescence type, such as replicative senescence (RS), tumor cell senescence (TCS), oncogene-induced senescence (OIS), stem cell senescence (SCS), progeria and endothelial cell senescence (ECS). Similar patterns of TREX-NCT gene downregulation were also shown in two large human tissue genomic databases, the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases. We also found that early-stage cancer tissues show consistent age-related patterns of TREX-NCT enrichment, suggesting the potential significance of TREX-NCT genes in determining cell fate in the early stage of tumorigenesis. Moreover, human cancer tissues exhibit an opposite TREX-NCT enrichment pattern with aging, indicating that deviation from age-related changes in TREX-NCT genes may provide a novel but critical clue for the age-dependent pathogenesis of cancer and increase in cancer incidence with aging. Proteins that move genetic information out of the nucleus and into the rest of the cell may be important in aging, and serve as markers of early-stage cancer. DNA is stored in the cell’s nucleus, and the messages which it encodes must be exported from the nucleus for gene expression. Aging is thought to be linked to a decrease in this export, but the exact mechanism remains unclear. Sung Young Kim, Konkuk University School of Medicine, Seoul, South Korea, and co-workers investigated key nuclear export proteins in healthy, cancerous, and aging cells. They found that nuclear export is strongly decreased in aging cells and shows distinctive patterns in very-early-stage cancer cells. These results shed further light on the cellular basis of aging, and may provide novel biomarkers for early cancer detection.
Collapse
|
6
|
Zhang B, You C, Zhang Y, Zeng L, Hu J, Zhao M, Chen X. Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis. NATURE PLANTS 2020; 6:957-969. [PMID: 32690891 PMCID: PMC7426256 DOI: 10.1038/s41477-020-0726-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/18/2020] [Indexed: 05/03/2023]
Abstract
Unlike in metazoans, the stepwise biogenesis of microRNAs (miRNAs) in plants occurs within the nucleus. Whether or how the major steps in miRNA biogenesis are coordinated is largely unknown. Here we show that the plant TREX-2 complex promotes multiple steps in miRNA biogenesis, including transcription, processing and nuclear export. THP1 and SAC3A-the core subunits of TREX-2-interact and colocalize with RNA polymerase II to promote the transcription of MIR genes in the nucleoplasm. TREX-2 interacts with the microprocessor component SERRATE and promotes the formation of dicing bodies in the nucleoplasm. THP1 also interacts and colocalizes with the nucleoporin protein NUP1 at the nuclear envelope. NUP1 and THP1 promote the nuclear export of miRNAs and ARGONAUTE1. These results suggest that TREX-2 coordinates the transcription, processing and export steps in miRNA biogenesis to ensure efficient miRNA production.
Collapse
Affiliation(s)
- Bailong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Chenjiang You
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Liping Zeng
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Jun Hu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Minglei Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
7
|
Nuño-Cabanes C, Ugidos M, Tarazona S, Martín-Expósito M, Ferrer A, Rodríguez-Navarro S, Conesa A. A multi-omics dataset of heat-shock response in the yeast RNA binding protein Mip6. Sci Data 2020; 7:69. [PMID: 32109230 PMCID: PMC7046740 DOI: 10.1038/s41597-020-0412-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/10/2020] [Indexed: 11/25/2022] Open
Abstract
Gene expression is a biological process regulated at different molecular levels, including chromatin accessibility, transcription, and RNA maturation and transport. In addition, these regulatory mechanisms have strong links with cellular metabolism. Here we present a multi-omics dataset that captures different aspects of this multi-layered process in yeast. We obtained RNA-seq, metabolomics, and H4K12ac ChIP-seq data for wild-type and mip6Δ strains during a heat-shock time course. Mip6 is an RNA-binding protein that contributes to RNA export during environmental stress and is informative of the contribution of post-transcriptional regulation to control cellular adaptations to environmental changes. The experiment was performed in quadruplicate, and the different omics measurements were obtained from the same biological samples, which facilitates the integration and analysis of data using covariance-based methods. We validate our dataset by showing that ChIP-seq, RNA-seq and metabolomics signals recapitulate existing knowledge about the response of ribosomal genes and the contribution of trehalose metabolism to heat stress. Raw data, processed data and preprocessing scripts are made available.
Collapse
Grants
- PROMETEO/2016/093 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- PROMETEO/2016/093 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- PROMETEO/2016/093 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- PROMETEO/2016/093 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- PROMETEO/2016/093 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
Collapse
Affiliation(s)
- Carme Nuño-Cabanes
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC). Jaume Roig, 11, E-46010, Valencia, Spain
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe, Eduardo Primo-Yúfera, E-46012, Valencia, Spain
| | - Manuel Ugidos
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC). Jaume Roig, 11, E-46010, Valencia, Spain
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe, Eduardo Primo-Yúfera, E-46012, Valencia, Spain
| | - Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Manuel Martín-Expósito
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC). Jaume Roig, 11, E-46010, Valencia, Spain
| | - Alberto Ferrer
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC). Jaume Roig, 11, E-46010, Valencia, Spain.
- Gene Expression and RNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe, Eduardo Primo-Yúfera, E-46012, Valencia, Spain.
| | - Ana Conesa
- Microbiology and Cell Science Department, University of Florida, Gainesville, Florida, USA.
- Institute for Food and Agricultural Reserach, University of Florida, Gainesville, Florida, USA.
- Genetics Institute, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
8
|
Distinct Functions of the Cap-Binding Complex in Stimulation of Nuclear mRNA Export. Mol Cell Biol 2019; 39:MCB.00540-18. [PMID: 30745412 DOI: 10.1128/mcb.00540-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
Cap-binding complex (CBC) associates cotranscriptionally with the cap structure at the 5' end of nascent mRNA to protect it from exonucleolytic degradation. Here, we show that CBC promotes the targeting of an mRNA export adaptor, Yra1 (forming transcription export [TREX] complex with THO and Sub2), to the active genes and enhances mRNA export in Saccharomyces cerevisiae Likewise, recruitment of Npl3 (an hnRNP involved in mRNA export via formation of export-competent ribonuclear protein complex [RNP]) to the active genes is facilitated by CBC. Thus, CBC enhances targeting of the export factors and promotes mRNA export. Such function of CBC is not mediated via THO and Sub2 of TREX, cleavage and polyadenylation factors, or Sus1 (that regulates mRNA export via transcription export 2 [TREX-2]). However, CBC promotes splicing of SUS1 mRNA and, consequently, Sus1 protein level and mRNA export via TREX-2. Collectively, our results support the hypothesis that CBC promotes recruitment of Yra1 and Npl3 to the active genes, independently of THO, Sub2, or cleavage and polyadenylation factors, and enhances mRNA export via TREX and RNP, respectively, in addition to its role in facilitating SUS1 mRNA splicing to increase mRNA export through TREX-2, revealing distinct stimulatory functions of CBC in mRNA export.
Collapse
|
9
|
Mechanism and Regulation of Co-transcriptional mRNP Assembly and Nuclear mRNA Export. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:1-31. [DOI: 10.1007/978-3-030-31434-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Ávila AR, Cabezas-Cruz A, Gissot M. mRNA export in the apicomplexan parasite Toxoplasma gondii: emerging divergent components of a crucial pathway. Parasit Vectors 2018; 11:62. [PMID: 29370868 PMCID: PMC5785795 DOI: 10.1186/s13071-018-2648-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Control of gene expression is crucial for parasite survival and is the result of a series of processes that are regulated to permit fine-tuning of gene expression in response to biological changes during the life-cycle of apicomplexan parasites. Control of mRNA nuclear export is a key process in eukaryotic cells but is poorly understood in apicomplexan parasites. Here, we review recent knowledge regarding this process with an emphasis on T. gondii. We describe the presence of divergent orthologs and discuss structural and functional differences in export factors between apicomplexans and other eukaryotic lineages. Undoubtedly, the use of the CRISPR/Cas9 system in high throughput screenings associated with the discovery of mRNA nuclear export complexes by proteomic analysis will contribute to identify these divergent factors. Ligand-based or structure-based strategies may be applied to investigate the potential use of these proteins as targets for new antiprotozoal agents.
Collapse
Affiliation(s)
- Andréa Rodrigues Ávila
- Instituto Carlos Chagas, FIOCRUZ, Rua Algacyr Munhoz Mader, 3775. CIC, Curitiba, PR, 81350-010, Brazil. .,UMR BIPAR, Animal Health Laboratory, ANSES, INRA, ENVA, Maisons Alfort, Cedex, France.
| | - Alexjandro Cabezas-Cruz
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, ENVA, Maisons Alfort, Cedex, France.,Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Mathieu Gissot
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France.
| |
Collapse
|
11
|
McClure-Begley TD, Klymkowsky MW. Nuclear roles for cilia-associated proteins. Cilia 2017; 6:8. [PMID: 28560031 PMCID: PMC5445336 DOI: 10.1186/s13630-017-0052-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/02/2017] [Indexed: 01/23/2023] Open
Abstract
Cilia appear to be derived, evolutionarily, from structures present in the ancestral (pre-ciliary) eukaryote, such as microtubule-based vesicle trafficking and chromosome segregation systems. Experimental observations suggest that the ciliary gate, the molecular complex that mediates the selective molecular movement between cytoplasmic and ciliary compartments, shares features with nuclear pores. Our hypothesis is that this shared transport machinery is at least partially responsible for the observation that a number of ciliary and ciliogenesis-associated proteins are found within nuclei where they play roles in the regulation of gene expression, DNA repair, and nuclear import and export. Recognizing the potential for such nuclear roles is critical when considering the phenotypic effects that arise from the mutational modification of ciliary proteins.
Collapse
Affiliation(s)
- Tristan D McClure-Begley
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Michael W Klymkowsky
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 USA
| |
Collapse
|