1
|
Cremer C, Schock F, Failla AV, Birk U. Modulated illumination microscopy: Application perspectives in nuclear nanostructure analysis. J Microsc 2024; 296:121-128. [PMID: 38618985 DOI: 10.1111/jmi.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
The structure of the cell nucleus of higher organisms has become a major topic of advanced light microscopy. So far, a variety of methods have been applied, including confocal laser scanning fluorescence microscopy, 4Pi, STED and localisation microscopy approaches, as well as different types of patterned illumination microscopy, modulated either laterally (in the object plane) or axially (along the optical axis). Based on our experience, we discuss here some application perspectives of Modulated Illumination Microscopy (MIM) and its combination with single-molecule localisation microscopy (SMLM). For example, spatially modulated illumination microscopy/SMI (illumination modulation along the optical axis) has been used to determine the axial extension (size) of small, optically isolated fluorescent objects between ≤ 200 nm and ≥ 40 nm diameter with a precision down to the few nm range; it also allows the axial positioning of such structures down to the 1 nm scale; combined with laterally structured illumination/SIM, a 3D localisation precision of ≤1 nm is expected using fluorescence yields typical for SMLM applications. Together with the nanosizing capability of SMI, this can be used to analyse macromolecular nuclear complexes with a resolution approaching that of cryoelectron microscopy.
Collapse
Affiliation(s)
- Christoph Cremer
- Kirchhoff Institute for Physics (KIP), Heidelberg, Germany
- Interdisciplinary Centre for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Florian Schock
- Kirchhoff Institute for Physics (KIP), Heidelberg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
| | - Udo Birk
- Institute for Photonics and Robotics (IPR), Department of Applied Future Technologies, University of Applied Sciences of the Grisons (FH Graubünden), Chur, Switzerland
| |
Collapse
|
2
|
Gelléri M, Chen SY, Hübner B, Neumann J, Kröger O, Sadlo F, Imhoff J, Hendzel MJ, Cremer M, Cremer T, Strickfaden H, Cremer C. True-to-scale DNA-density maps correlate with major accessibility differences between active and inactive chromatin. Cell Rep 2023; 42:112567. [PMID: 37243597 DOI: 10.1016/j.celrep.2023.112567] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023] Open
Abstract
Chromatin compaction differences may have a strong impact on accessibility of individual macromolecules and macromolecular assemblies to their DNA target sites. Estimates based on fluorescence microscopy with conventional resolution, however, suggest only modest compaction differences (∼2-10×) between the active nuclear compartment (ANC) and inactive nuclear compartment (INC). Here, we present maps of nuclear landscapes with true-to-scale DNA densities, ranging from <5 to >300 Mbp/μm3. Maps are generated from individual human and mouse cell nuclei with single-molecule localization microscopy at ∼20 nm lateral and ∼100 nm axial optical resolution and are supplemented by electron spectroscopic imaging. Microinjection of fluorescent nanobeads with sizes corresponding to macromolecular assemblies for transcription into nuclei of living cells demonstrates their localization and movements within the ANC and exclusion from the INC.
Collapse
Affiliation(s)
- Márton Gelléri
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | - Shih-Ya Chen
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Barbara Hübner
- Biocenter, Department Biology II, Ludwig Maximilian University (LMU), 82152 Martinsried, Germany
| | - Jan Neumann
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Ole Kröger
- Interdisciplinary Center for Scientific Computing (IWR), University Heidelberg, 69120 Heidelberg, Germany
| | - Filip Sadlo
- Interdisciplinary Center for Scientific Computing (IWR), University Heidelberg, 69120 Heidelberg, Germany
| | - Jorg Imhoff
- Neuroconsult GmbH, 69120 Heidelberg, Germany
| | - Michael J Hendzel
- Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Marion Cremer
- Biocenter, Department Biology II, Ludwig Maximilian University (LMU), 82152 Martinsried, Germany
| | - Thomas Cremer
- Biocenter, Department Biology II, Ludwig Maximilian University (LMU), 82152 Martinsried, Germany
| | - Hilmar Strickfaden
- Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Christoph Cremer
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Max Planck Institute for Chemistry, 55128 Mainz, Germany; Interdisciplinary Center for Scientific Computing (IWR), University Heidelberg, 69120 Heidelberg, Germany; Kirchhoff Institute for Physics, University Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Chapman KB, Filipsky F, Peschke N, Gelléri M, Weinhardt V, Braun A, Hausmann M, Cremer C. A comprehensive method to study the DNA's association with lamin and chromatin compaction in intact cell nuclei at super resolution. NANOSCALE 2023; 15:742-756. [PMID: 36524744 PMCID: PMC9813922 DOI: 10.1039/d2nr02684h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Super-resolution fluorescence microscopy has revolutionized multicolor imaging of nuclear structures due to the combination of high labeling specificity and high resolution. Here we expanded the recently developed fBALM (DNA structure fluctuation-assisted binding activated localization microscopy) method by developing a stable methodological sequence that enables dual-color imaging of high-resolution genomic DNA together with an immunofluorescently labeled intranuclear protein. Our measurements of the nuclear periphery, imaging DNA and LaminB1 in biologically relevant samples, show that this novel dual-color imaging method is feasible for further quantitative evaluations. We were able to study the relative spatial signal organization between DNA and LaminB1 by means of highly specific colocalization measurements at nanometer resolution. Measurements were performed with and without the antifade embedding medium ProLong Gold, which proved to be essential for imaging of LaminB1, but not for imaging of SytoxOrange labeled DNA. The localization precision was used to differentiate between localizations with higher and lower amounts of emitting photons. We interpret high intensity localizations to be renatured DNA sections in which a high amount of Sytox Orange molecules were bound. This could give insight into the denaturation kinetics of DNA during fBALM. These results were further complemented by measurements of γH2AX and H3K9me3 signal organization to demonstrate differences within the chromatin landscape, which were quantified with image processing methods such as Voronoi segmentation.
Collapse
Affiliation(s)
- Katarina B Chapman
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Filip Filipsky
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nicolas Peschke
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
| | - Márton Gelléri
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Venera Weinhardt
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Andrejs Braun
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
| | - Christoph Cremer
- Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| |
Collapse
|
4
|
Razin SV, Gavrilov AA. Non-coding RNAs in chromatin folding and nuclear organization. Cell Mol Life Sci 2021; 78:5489-5504. [PMID: 34117518 PMCID: PMC11072467 DOI: 10.1007/s00018-021-03876-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022]
Abstract
One of the most intriguing questions facing modern biology concerns how the genome directs the construction of cells, tissues, and whole organisms. It is tempting to suggest that the part of the genome that does not encode proteins contains architectural plans. We are still far from understanding how these plans work at the level of building tissues and the body as a whole. However, the results of recent studies demonstrate that at the cellular level, special non-coding RNAs serve as scaffolds for the construction of various intracellular structures. The term "architectural RNAs" was proposed to designate this subset of non-coding RNAs. In this review, we discuss the role of architectural RNAs in the construction of the cell nucleus and maintenance of the three-dimensional organization of the genome.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| |
Collapse
|
5
|
Molecular Pathogenesis of Hodgkin Lymphoma: Past, Present, Future. Int J Mol Sci 2020; 21:ijms21186623. [PMID: 32927751 PMCID: PMC7554683 DOI: 10.3390/ijms21186623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the tumorigenesis of classical Hodgkin lymphoma (cHL) and the formation of Reed–Sternberg cells (RS-cells) has evolved drastically in the last decades. More recently, a better characterization of the signaling pathways and the cellular interactions at play have paved the way for new targeted therapy in the hopes of improving outcomes. However, important gaps in knowledge remain that may hold the key for significant changes of paradigm in this lymphoma. Here, we discuss the past, present, and future of cHL, and review in detail the more recent discoveries pertaining to genetic instability, anti-apoptotic signaling pathways, the tumoral microenvironment, and host-immune system evasion in cHL.
Collapse
|
6
|
Chen SY, Heintzmann R, Cremer C. Sample drift estimation method based on speckle patterns formed by backscattered laser light. BIOMEDICAL OPTICS EXPRESS 2019; 10:6462-6475. [PMID: 31853411 PMCID: PMC6913400 DOI: 10.1364/boe.10.006462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 05/06/2023]
Abstract
Single molecule localization microscopy (SMLM) has been established to acquire images with unprecedented resolution down to several nanometers. A typical time scale for image acquisition is several minutes to hours. Yet it is difficult to avoid completely sample drift for long time measurements. To estimate drift, we present a method based on the evaluation of speckle patterns formed by backscattered laser light from the cells using a single molecule localization microscope setup. A z-stack of unique speckle patterns is recorded prior to the measurements as a three-dimensional position reference. During the experiment, images of scattered laser light were acquired, and correlated individually with each of the images of the speckle reference stack to estimate x, y and z drift. Our method shows highly comparable results with a fiducial marker approach, achieving a precision of several nanometers. This method allows for high precision three dimensional drift correction of microscope systems without any additional sample preparation.
Collapse
Affiliation(s)
| | - Rainer Heintzmann
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Christoph Cremer
- Institute of Molecular Biology, Mainz, Germany
- Department of Physics, University of Mainz (JGU), Mainz, Germany
| |
Collapse
|
7
|
Allgayer H, Leupold JH, Patil N. Defining the "Metastasome": Perspectives from the genome and molecular landscape in colorectal cancer for metastasis evolution and clinical consequences. Semin Cancer Biol 2019; 60:1-13. [PMID: 31362074 DOI: 10.1016/j.semcancer.2019.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Metastasis still poses the highest challenge for personalized therapy in cancer, partly due to a still incomplete understanding of its molecular evolution. We recently presented the most comprehensive whole-genome study of colorectal metastasis vs. matched primary tumors and suggested novel components of disease progression and metastasis evolution, some of them potentially relevant for targeted therapy. In this review, we try to put these findings into perspective with latest discoveries of colleagues and recent literature, and propose a systematic international team effort to collectively define the "metastasome", a term we introduce to summarize all genomic, epigenomic, transcriptomic, further -omic, molecular and functional characteristics rendering metastases different from primary tumors. Based on recent discoveries, we propose a revised metastasis model for colorectal cancer which is based on a common ancestor clone, early dissemination but flexible early or late stage clonal separation paralleling stromal interactions. Furthermore, we discuss hypotheses on site-specific metastasis, colorectal cancer progression, metastasis-targeted diagnosis and therapy, and metastasis prevention based on latest metastasome data.
Collapse
Affiliation(s)
- Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Theodor Kutzer Ufer 1-3, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ludolf-Krehl-Str. 6, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany.
| | - Jörg H Leupold
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Theodor Kutzer Ufer 1-3, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ludolf-Krehl-Str. 6, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany
| | - Nitin Patil
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Theodor Kutzer Ufer 1-3, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ludolf-Krehl-Str. 6, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany
| |
Collapse
|
8
|
Birk UJ. Super-Resolution Microscopy of Chromatin. Genes (Basel) 2019; 10:E493. [PMID: 31261775 PMCID: PMC6678334 DOI: 10.3390/genes10070493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023] Open
Abstract
Since the advent of super-resolution microscopy, countless approaches and studies have been published contributing significantly to our understanding of cellular processes. With the aid of chromatin-specific fluorescence labeling techniques, we are gaining increasing insight into gene regulation and chromatin organization. Combined with super-resolution imaging and data analysis, these labeling techniques enable direct assessment not only of chromatin interactions but also of the function of specific chromatin conformational states.
Collapse
Affiliation(s)
- Udo J Birk
- University of Applied Sciences HTW Chur, Pulvermühlestrasse 57, 7004 Chur, Switzerland.
- Institut für Physik, Universität Mainz, 55122 Mainz, Germany.
| |
Collapse
|
9
|
Szczepińska T, Rusek AM, Plewczynski D. Intermingling of chromosome territories. Genes Chromosomes Cancer 2019; 58:500-506. [DOI: 10.1002/gcc.22736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Anna Maria Rusek
- Centre of New TechnologiesUniversity of Warsaw Warsaw Poland
- Clinical Molecular Biology DepartmentMedical University of Bialystok Bialystok Poland
| | - Dariusz Plewczynski
- Centre of New TechnologiesUniversity of Warsaw Warsaw Poland
- Faculty of Mathematics and Information ScienceWarsaw University of Technology Warsaw Poland
| |
Collapse
|
10
|
Cremer M, Cremer T. Nuclear compartmentalization, dynamics, and function of regulatory DNA sequences. Genes Chromosomes Cancer 2019; 58:427-436. [DOI: 10.1002/gcc.22714] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marion Cremer
- Biocenter, Department Biology II; Ludwig Maximilians-Universität (LMU Munich); Munich Germany
| | - Thomas Cremer
- Biocenter, Department Biology II; Ludwig Maximilians-Universität (LMU Munich); Munich Germany
| |
Collapse
|
11
|
Chen SY, Bestvater F, Schaufler W, Heintzmann R, Cremer C. Patterned illumination single molecule localization microscopy (piSMLM): user defined blinking regions of interest. OPTICS EXPRESS 2018; 26:30009-30020. [PMID: 30469881 DOI: 10.1364/oe.26.030009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 05/23/2023]
Abstract
Single molecule localization microscopy (SMLM) has been established as an important super-resolution technique for studying subcellular structures with a resolution down to a lateral scale of 10 nm. Usually samples are illuminated with a Gaussian shaped beam and consequently insufficient irradiance on the periphery of the illuminated region leads to artifacts in the reconstructed image which degrades image quality. We present a newly developed patterned illumination SMLM (piSMLM) to overcome the problem of uneven illumination by computer-generated holography. By utilizing a phase-only spatial light modulator (SLM) in combination with a modified Gerchberg-Saxton algorithm, a user-defined pattern with homogeneous and nearly speckle-free illumination is obtained. Our experimental results show that irradiance 1 to 5 kW/cm2 was achieved by using a laser with an output power of 200 mW in a region of 2000 µm2 to 500 µm2, respectively. Higher irradiance of up to 20 kW/cm2 can be reached by simply reducing the size of the region of interest (ROI). To demonstrate the application of the piSMLM, nuclear structures were imaged based on fluctuation binding-activated localization microscopy (fBALM). The super-resolution fBALM images revealed nuclear structures at a nanometer scale.
Collapse
|
12
|
Abdollahi E, Taucher-Scholz G, Jakob B. Application of fluorescence lifetime imaging microscopy of DNA binding dyes to assess radiation-induced chromatin compaction changes. Int J Mol Sci 2018; 19:E2399. [PMID: 30110966 PMCID: PMC6121443 DOI: 10.3390/ijms19082399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 01/19/2023] Open
Abstract
In recent years several approaches have been developed to address the chromatin status and its changes in eukaryotic cells under different conditions-but only few are applicable in living cells. Fluorescence lifetime imaging microscopy (FLIM) is a functional tool that can be used for the inspection of the molecular environment of fluorophores in living cells. Here, we present the use of single organic minor groove DNA binder dyes in FLIM for measuring chromatin changes following modulation of chromatin structure in living cells. Treatment with histone deacetylase inhibitors led to an increased fluorescence lifetime indicating global chromatin decompaction, whereas hyperosmolarity decreased the lifetime of the used dyes, thus reflecting the expected compaction. In addition, we demonstrate that time domain FLIM data based on single photon counting should be optimized using pile-up and counting loss correction, which affect the readout even at moderate average detector count rates in inhomogeneous samples. Using these corrections and utilizing Hoechst 34580 as chromatin compaction probe, we measured a pan nuclear increase in the lifetime following irradiation with X-rays in living NIH/3T3 cells thus providing a method to measure radiation-induced chromatin decompaction.
Collapse
Affiliation(s)
- Elham Abdollahi
- Department of Biophysics, GSI Helmholzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.
| | - Gisela Taucher-Scholz
- Department of Biophysics, GSI Helmholzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.
| |
Collapse
|