1
|
Wang Z, Zhang X, Liu C, Duncan S, Hang R, Sun J, Luo L, Ding Y, Cao X. AtPRMT3-RPS2B promotes ribosome biogenesis and coordinates growth and cold adaptation trade-off. Nat Commun 2024; 15:8693. [PMID: 39375381 PMCID: PMC11488217 DOI: 10.1038/s41467-024-52945-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Translation, a fundamental process regulating cellular growth and proliferation, relies on functional ribosomes. As sessile organisms, plants have evolved adaptive strategies to maintain a delicate balance between growth and stress response. But the underlying mechanisms, particularly on the translational level, remain less understood. In this study, we revealed the mechanisms of AtPRMT3-RPS2B in orchestrating ribosome assembly and managing translational regulation. Through a forward genetic screen, we identified PDCD2-D1 as a suppressor gene restoring abnormal development and ribosome biogenesis in atprmt3-2 mutants. Our findings confirmed that PDCD2 interacts with AtPRMT3-RPS2B, and facilitates pre-ribosome transport through nuclear pore complex, finally ensuring normal ribosome translation in the cytoplasm. Additionally, the dysfunction of AtPRMT3-RPS2B was found to enhance freezing tolerance. Moreover, we revealed that AtPRMT3-RPS2B promotes the translation of housekeeping mRNAs while concurrently repressing stress-related mRNAs. In summary, our study sheds light on the regulatory roles of AtPRMT3-RPS2B in ribosome assembly and translational balance, enabling the trade-off between growth and stress.
Collapse
Affiliation(s)
- Zhen Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
| | - Xiaofan Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Susan Duncan
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Runlai Hang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Sun
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lilan Luo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiliang Ding
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Yu W, Tingey M, Kelich JM, Li Y, Yu J, Junod SL, Jiang Z, Hansen I, Good N, Yang W. Exploring Cellular Gateways: Unraveling the Secrets of Disordered Proteins within Live Nuclear Pores. RESEARCH SQUARE 2024:rs.3.rs-3504130. [PMID: 38260360 PMCID: PMC10802689 DOI: 10.21203/rs.3.rs-3504130/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Understanding the spatial organization of nucleoporins (Nups) with intrinsically disordered domains within the nuclear pore complex (NPC) is crucial for deciphering eukaryotic nucleocytoplasmic transport. Leveraging high-speed 2D single-molecule tracking and virtual 3D super-resolution microscopy in live HeLa cells, we investigated the spatial distribution of all eleven phenylalanine-glycine (FG)-rich Nups within individual NPCs. Our study reveals a nuanced landscape of FG-Nup conformations and arrangements. Five FG-Nups are steadfastly anchored at the NPC scaffold, collectively shaping a central doughnut-shaped channel, while six others exhibit heightened flexibility, extending towards the cytoplasmic and nucleoplasmic regions. Intriguingly, Nup214 and Nup153 contribute to cap-like structures that dynamically alternate between open and closed states along the nucleocytoplasmic transport axis, impacting the cytoplasmic and nuclear sides, respectively. Furthermore, Nup98, concentrated at the scaffold region, extends throughout the entire NPC while overlapping with other FG-Nups. Together, these eleven FG-Nups compose a versatile, capped trichoid channel spanning approximately 270 nm across the nuclear envelope. This adaptable trichoid channel facilitates a spectrum of pathways for passive diffusion and facilitated nucleocytoplasmic transport. Our comprehensive mapping of FG-Nup organization within live NPCs offers a unifying mechanism accommodating multiple transport pathways, thereby advancing our understanding of cellular transport processes.
Collapse
Affiliation(s)
- Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Joseph M. Kelich
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Jingjie Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Samuel L. Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Zecheng Jiang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Ian Hansen
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Nacef Good
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Bobkova MR. Cellular proteins as potential targets for antiretroviral therapy. Vopr Virusol 2023; 68:488-504. [PMID: 38156565 DOI: 10.36233/0507-4088-207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 12/30/2023]
Abstract
The review article conducts an in-depth analysis of information gleaned from a comprehensive literature search across Scopus, Web of Science, and MedLine databases. The focal point of this search revolves around the identification and exploration of the mechanisms orchestrated by host cell factors in the replication cycle of the human immunodeficiency virus (HIV-1, Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus-1). The article delves into two primary categories of proteins, namely HIV dependence factors (such as CypA, LEDGF, TSG101) and restriction factors (including SERINС5, TRIM5α, APOBEC3G), providing illustrative examples. The current understanding of the functioning mechanisms of these proteins is elucidated, and an evaluation is presented on the potential development of drugs for treating HIV infection. These drugs aim to either inhibit or stimulate the activity of host factors, offering insights into promising avenues for future research and therapeutic advancements.
Collapse
Affiliation(s)
- M R Bobkova
- I. Mechnikov Research Institute for Vaccines and Sera
| |
Collapse
|
4
|
Rush C, Jiang Z, Tingey M, Feng F, Yang W. Unveiling the complexity: assessing models describing the structure and function of the nuclear pore complex. Front Cell Dev Biol 2023; 11:1245939. [PMID: 37876551 PMCID: PMC10591098 DOI: 10.3389/fcell.2023.1245939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
The nuclear pore complex (NPC) serves as a pivotal subcellular structure, acting as a gateway that orchestrates nucleocytoplasmic transport through a selectively permeable barrier. Nucleoporins (Nups), particularly those containing phenylalanine-glycine (FG) motifs, play indispensable roles within this barrier. Recent advancements in technology have significantly deepened our understanding of the NPC's architecture and operational intricacies, owing to comprehensive investigations. Nevertheless, the conspicuous presence of intrinsically disordered regions within FG-Nups continues to present a formidable challenge to conventional static characterization techniques. Historically, a multitude of strategies have been employed to unravel the intricate organization and behavior of FG-Nups within the NPC. These endeavors have given rise to multiple models that strive to elucidate the structural layout and functional significance of FG-Nups. Within this exhaustive review, we present a comprehensive overview of these prominent models, underscoring their proposed dynamic and structural attributes, supported by pertinent research. Through a comparative analysis, we endeavor to shed light on the distinct characteristics and contributions inherent in each model. Simultaneously, it remains crucial to acknowledge the scarcity of unequivocal validation for any of these models, as substantiated by empirical evidence.
Collapse
Affiliation(s)
| | | | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Junod SL, Tingey M, Kelich JM, Goryaynov A, Herbine K, Yang W. Dynamics of nuclear export of pre-ribosomal subunits revealed by high-speed single-molecule microscopy in live cells. iScience 2023; 26:107445. [PMID: 37599825 PMCID: PMC10433129 DOI: 10.1016/j.isci.2023.107445] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
We present a study on the nuclear export efficiency and time of pre-ribosomal subunits in live mammalian cells, using high-speed single-molecule tracking and single-molecule fluorescence resonance energy transfer techniques. Our findings reveal that pre-ribosomal particles exhibit significantly higher nuclear export efficiency compared to other large cargos like mRNAs, with around two-thirds of interactions between the pre-60S or pre-40S and the nuclear pore complexes (NPCs) resulting in successful export to the cytoplasm. We also demonstrate that nuclear transport receptor (NTR) chromosomal maintenance 1 (CRM1) plays a crucial role in nuclear export efficiency, with pre-60S and pre-40S particle export efficiency decreasing by 11-17-fold when CRM1 is inhibited. Our results suggest that multiple copies of CRM1 work cooperatively to chaperone pre-ribosomal subunits through the NPC, thus increasing export efficiency and decreasing export time. Significantly, this cooperative NTR mechanism extends beyond pre-ribosomal subunits, as evidenced by the enhanced nucleocytoplasmic transport of proteins.
Collapse
Affiliation(s)
- Samuel L. Junod
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, PA, USA
| | | | | | - Karl Herbine
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Yu W, Rush C, Tingey M, Junod S, Yang W. Application of Super-resolution SPEED Microscopy in the Study of Cellular Dynamics. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:356-371. [PMID: 37501792 PMCID: PMC10369678 DOI: 10.1021/cbmi.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023]
Abstract
Super-resolution imaging techniques have broken the diffraction-limited resolution of light microscopy. However, acquiring three-dimensional (3D) super-resolution information about structures and dynamic processes in live cells at high speed remains challenging. Recently, the development of high-speed single-point edge-excitation subdiffraction (SPEED) microscopy, along with its 2D-to-3D transformation algorithm, provides a practical and effective approach to achieving 3D subdiffraction-limit information in subcellular structures and organelles with rotational symmetry. One of the major benefits of SPEED microscopy is that it does not rely on complex optical components and can be implemented on a standard, inverted epifluorescence microscope, simplifying the process of sample preparation and the expertise requirement. SPEED microscopy is specifically designed to obtain 2D spatial locations of individual immobile or moving fluorescent molecules inside submicrometer biological channels or cavities at high spatiotemporal resolution. The collected data are then subjected to postlocalization 2D-to-3D transformation to obtain 3D super-resolution structural and dynamic information. In recent years, SPEED microscopy has provided significant insights into nucleocytoplasmic transport across the nuclear pore complex (NPC) and cytoplasm-cilium trafficking through the ciliary transition zone. This Review focuses on the applications of SPEED microscopy in studying the structure and function of nuclear pores.
Collapse
Affiliation(s)
- Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Coby Rush
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Samuel Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
7
|
Udi Y, Zhang W, Stein ME, Ricardo-Lax I, Pasolli HA, Chait BT, Rout MP. A general method for quantitative fractionation of mammalian cells. J Cell Biol 2023; 222:213941. [PMID: 36920247 PMCID: PMC10040634 DOI: 10.1083/jcb.202209062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/11/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Subcellular fractionation in combination with mass spectrometry-based proteomics is a powerful tool to study localization of key proteins in health and disease. Here we offered a reliable and rapid method for mammalian cell fractionation, tuned for such proteomic analyses. This method proves readily applicable to different cell lines in which all the cellular contents are accounted for, while maintaining nuclear and nuclear envelope integrity. We demonstrated the method's utility by quantifying the effects of a nuclear export inhibitor on nucleoplasmic and cytoplasmic proteomes.
Collapse
Affiliation(s)
- Yael Udi
- Laboratory of Cellular and Structural Biology, The Rockefeller University , New York, NY, USA
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University , New York, NY, USA
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller University , New York, NY, USA
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University , New York, NY, USA
| | - Hilda A Pasolli
- Electron Microscopy Resource Center, The Rockefeller University , New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University , New York, NY, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University , New York, NY, USA
| |
Collapse
|
8
|
Obtaining 3D super-resolution images by utilizing rotationally symmetric structures and 2D-to-3D transformation. Comput Struct Biotechnol J 2023; 21:1424-1432. [PMID: 36824228 PMCID: PMC9941874 DOI: 10.1016/j.csbj.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Super-resolution imaging techniques have provided unprecedentedly detailed information by surpassing the diffraction-limited resolution of light microscopy. However, in order to derive high quality spatial resolution, many of these techniques require high laser power, extended imaging time, dedicated sample preparation, or some combination of the three. These constraints are particularly evident when considering three-dimensional (3D) super-resolution imaging. As a result, high-speed capture of 3D super-resolution information of structures and dynamic processes within live cells remains both desirable and challenging. Recently, a highly effective approach to obtain 3D super-resolution information was developed that can be employed in commonly available laboratory microscopes. This development makes it both scientifically possible and financially feasible to obtain super-resolution 3D information under certain conditions. This is accomplished by converting 2D single-molecule localization data captured at high speed within subcellular structures and rotationally symmetric organelles. Here, a high-speed 2D single-molecule tracking and post-localization technique, known as single-point edge-excitation sub-diffraction (SPEED) microcopy, along with its 2D-to-3D transformation algorithm is detailed with special emphasis on the mathematical principles and Monte Carlo simulation validation of the technique.
Collapse
|
9
|
Tingey M, Schnell SJ, Yu W, Saredy J, Junod S, Patel D, Alkurdi AA, Yang W. Technologies Enabling Single-Molecule Super-Resolution Imaging of mRNA. Cells 2022; 11:3079. [PMID: 36231040 PMCID: PMC9564294 DOI: 10.3390/cells11193079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The transient nature of RNA has rendered it one of the more difficult biological targets for imaging. This difficulty stems both from the physical properties of RNA as well as the temporal constraints associated therewith. These concerns are further complicated by the difficulty in imaging endogenous RNA within a cell that has been transfected with a target sequence. These concerns, combined with traditional concerns associated with super-resolution light microscopy has made the imaging of this critical target difficult. Recent advances have provided researchers the tools to image endogenous RNA in live cells at both the cellular and single-molecule level. Here, we review techniques used for labeling and imaging RNA with special emphases on various labeling methods and a virtual 3D super-resolution imaging technique.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|