1
|
Badyra B, Sułkowski M, Milczarek O, Majka M. Mesenchymal stem cells as a multimodal treatment for nervous system diseases. Stem Cells Transl Med 2020; 9:1174-1189. [PMID: 32573961 PMCID: PMC7519763 DOI: 10.1002/sctm.19-0430] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Neurological disorders are a massive challenge for modern medicine. Apart from the fact that this group of diseases is the second leading cause of death worldwide, the majority of patients have no access to any possible effective and standardized treatment after being diagnosed, leaving them and their families helpless. This is the reason why such great emphasis is being placed on the development of new, more effective methods to treat neurological patients. Regenerative medicine opens new therapeutic approaches in neurology, including the use of cell-based therapies. In this review, we focus on summarizing one of the cell sources that can be applied as a multimodal treatment tool to overcome the complex issue of neurodegeneration-mesenchymal stem cells (MSCs). Apart from the highly proven safety of this approach, beneficial effects connected to this type of treatment have been observed. This review presents modes of action of MSCs, explained on the basis of data from vast in vitro and preclinical studies, and we summarize the effects of using these cells in clinical trial settings. Finally, we stress what improvements have already been made to clarify the exact mechanism of MSCs action, and we discuss potential ways to improve the introduction of MSC-based therapies in clinics. In summary, we propose that more insightful and methodical optimization, by combining careful preparation and administration, can enable use of multimodal MSCs as an effective, tailored cell therapy suited to specific neurological disorders.
Collapse
Affiliation(s)
- Bogna Badyra
- Department of TransplantationJagiellonian University Medical CollegeCracowPoland
| | - Maciej Sułkowski
- Department of TransplantationJagiellonian University Medical CollegeCracowPoland
| | - Olga Milczarek
- Department of Children NeurosurgeryJagiellonian University Medical CollegeCracowPoland
| | - Marcin Majka
- Department of TransplantationJagiellonian University Medical CollegeCracowPoland
| |
Collapse
|
2
|
Karakaş N, Bay S, Türkel N, Öztunç N, Öncül M, Bilgen H, Shah K, Şahin F, Öztürk G. Neurons from human mesenchymal stem cells display both spontaneous and stimuli responsive activity. PLoS One 2020; 15:e0228510. [PMID: 32407317 PMCID: PMC7224507 DOI: 10.1371/journal.pone.0228510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have the ability to transdifferentiate into neurons and therefore one of the potential adult stem cell source for neuronal tissue regeneration applications and understanding neurodevelopmental processes. In many studies on human mesenchymal stem cell (hMSC) derived neurons, success in neuronal differentiation was limited to neuronal protein expressions which is not statisfactory in terms of neuronal activity. Established neuronal networks seen in culture have to be investigated in terms of synaptic signal transmission ability to develop a culture model for human neurons and further studying the mechanism of neuronal differentiation and neurological pathologies. Accordingly, in this study, we analysed the functionality of bone marrow hMSCs differentiated into neurons by a single step cytokine-based induction protocol. Neurons from both primary hMSCs and hMSC cell line displayed spontaneous activity (≥75%) as demonstrated by Ca++ imaging. Furthermore, when electrically stimulated, hMSC derived neurons (hMd-Neurons) matched the response of a typical neuron in the process of maturation. Our results reveal that a combination of neuronal inducers enhance differentiation capacity of bone marrow hMSCs into high yielding functional neurons with spontaneous activity and mature into electrophysiologically active state. Conceptually, we suggest these functional hMd-Neurons to be used as a tool for disease modelling of neuropathologies and neuronal differentiation studies.
Collapse
Affiliation(s)
- Nihal Karakaş
- Medical Biology Department, School of Medicine, İstanbul Medipol University, İstanbul, Turkey
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
- * E-mail:
| | - Sadık Bay
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| | - Nezaket Türkel
- Genetics and Bioengineering Department, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Nurşah Öztunç
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
- Medical Biology and Genetics Program, Graduate School of Health Sciences, İstanbul Medipol University, İstanbul, Turkey
| | - Merve Öncül
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| | - Hülya Bilgen
- Center for Bone Marrow Transplantation, İstanbul Medipol University Hospital, İstanbul, Turkey
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Woman’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fikrettin Şahin
- Genetics and Bioengineering Department, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
- Physiology Department, International School of Medicine, İstanbul Medipol University, İstanbul, Turkey
| |
Collapse
|
3
|
Anand SK, Mondal AC. Neuroanatomical distribution and functions of brain-derived neurotrophic factor in zebrafish (Danio rerio) brain. J Neurosci Res 2019; 98:754-763. [PMID: 31532010 DOI: 10.1002/jnr.24536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is an extensively studied protein that is evolutionarily conserved and widely distributed in the brain of vertebrates. It acts via its cognate receptors TrkB and p75NTR and plays a central role in the developmental neurogenesis, neuronal survival, proliferation, differentiation, synaptic plasticity, learning and memory, adult hippocampal neurogenesis, and brain regeneration. BDNF has also been implicated in a plethora of neurological disorders. Hence, understanding the processes that are controlled by BDNF and their regulating mechanisms is important. Although, BDNF has been thoroughly studied in the mammalian models, contradictory effects of its functions have been reported on several occasions. These contradictory effects may be attributed to the sheer complexity of the mammalian brain. The study of BDNF and its associated functions in a simpler vertebrate model may provide some clarity about the effects of BDNF on the neurophysiology of the brain. Keeping that in mind, this review aims at summarizing the current knowledge about the distribution of BDNF and its associated functions in the zebrafish brain. The main focus of the review is to give a comparative overview of BDNF distribution and function in zebrafish and mammals with respect to distinct life stages. We have also reviewed the regulation of bdnf gene in zebrafish and discussed its role in developmental and adult neurogenesis.
Collapse
Affiliation(s)
- Surendra Kumar Anand
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Small molecule-based lineage switch of human adipose-derived stem cells into neural stem cells and functional GABAergic neurons. Sci Rep 2017; 7:10166. [PMID: 28860504 PMCID: PMC5579051 DOI: 10.1038/s41598-017-10394-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022] Open
Abstract
Cellular reprogramming using small molecules (SMs) without genetic modification provides a promising strategy for generating target cells for cell-based therapy. Human adipose-derived stem cells (hADSCs) are a desirable cell source for clinical application due to their self-renewal capacity, easy obtainability and the lack of safety concerns, such as tumor formation. However, methods to convert hADSCs into neural cells, such as neural stem cells (NSCs), are inefficient, and few if any studies have achieved efficient reprogramming of hADSCs into functional neurons. Here, we developed highly efficient induction protocols to generate NSC-like cells (iNSCs), neuron-like cells (iNs) and GABAergic neuron-like cells (iGNs) from hADSCs via SM-mediated inhibition of SMAD signaling without genetic manipulation. All induced cells adopted morphological, molecular and functional features of their bona fide counterparts. Electrophysiological data demonstrated that iNs and iGNs exhibited electrophysiological properties of neurons and formed neural networks in vitro. Microarray analysis further confirmed that iNSCs and iGNs underwent lineage switch toward a neural fate. Together, these studies provide rapid, reproducible and robust protocols for efficient generation of functional iNSCs, iNs and iGNs from hADSCs, which have utility for modeling disease pathophysiology and providing cell-therapy sources of neurological disorders.
Collapse
|