1
|
Fan X, Yao S, Luo X, Dong T, Xu Y, Chen L, Bourland W, Zhao Y, Huang J. Some morphologically distinguishable hypotrich ciliates share identical 18S rRNA gene sequences – taxonomic insights from a case study on Oxytricha species (Protista, Ciliophora). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlaa145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Modern taxonomic studies of ciliated protozoa require both morphological and molecular data. One dilemma is how to distinguish morphologically similar species with few nucleotide differences in the widely used marker, the 18S rRNA gene. In the present study, two Oxytricha species were morphologically documented using light and electron microscopy. The mitochondrial cytochrome c oxidase subunit I (COI) gene and a fragment of the rRNA gene covering the 18S-ITS1-5.8S-ITS2-28S rRNA gene regions were sequenced. Phylogenetic analyses of all available Oxytricha granulifera-related populations were performed to reveal the internal relationships of this group. We described a new species, Oxytricha atypica sp. nov., distinguished from its congeners by having seven postoral ventral cirri resulting from the additional fragmentation of anlage V during ontogenesis. Although their 18S rRNA genes differ by only one nucleotide, divergence of the COI gene is as high as 11.8% between O. atypica and the closely related species, O. granulifera. All but one of the COI nucleotide substitutions were synonymous. We documented the highly conserved nature of the 18S rRNA gene in the morphospecies of Oxytricha. Based on these findings, we speculate that O. granulifera contains cryptic species or morphospecies needing further characterization, and new insights for the taxonomy of hypotrich ciliates are also discussed.
Collapse
Affiliation(s)
- Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Shunli Yao
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaotian Luo
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tianyao Dong
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Lingyun Chen
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - William Bourland
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Yan Zhao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jie Huang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Olajide JS, Cai J. Perils and Promises of Pathogenic Protozoan Extracellular Vesicles. Front Cell Infect Microbiol 2020; 10:371. [PMID: 32923407 PMCID: PMC7456935 DOI: 10.3389/fcimb.2020.00371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous structures formed during biological processes in living organisms. For protozoan parasites, secretion of EVs can occur directly from the parasite organellar compartments and through parasite-infected or antigen-stimulated host cells in response to in vitro and in vivo physiological stressors. These secreted EVs characteristically reflect the biochemical features of their parasitic origin and activating stimuli. Here, we review the species-specific morphology and integrity of parasitic protozoan EVs in concurrence with the origin, functions, and internalization process by recipient cells. The activating stimuli for the secretion of EVs in pathogenic protozoa are discoursed alongside their biomolecules and specific immune cell responses to protozoan parasite-derived EVs. We also present some insights on the intricate functions of EVs in the context of protozoan parasitism.
Collapse
Affiliation(s)
- Joshua Seun Olajide
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China.,Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| |
Collapse
|
3
|
da Silva Paiva T. Systematic Redefinition of the Hypotricha (Alveolata, Ciliophora) Based on Combined Analyses of Morphological and Molecular Characters. Protist 2020; 171:125755. [PMID: 32858402 DOI: 10.1016/j.protis.2020.125755] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
Abstract
The systematics of Hypotricha is one of the most puzzling problems in ciliate biology, having spanned numerous conflicting hypotheses with unstable relationships at various levels in molecular trees, for which the constant addition of newly discovered species has only increased the confusion. The hypotrichs comprise a remarkable morphologically diversified group of ciliates, and the phylogenetic potential of morphological traits is generally recognized. However, such characters were rarely used in phylogenetic reconstructions, and congruence with molecular data never assessed from simultaneous analyses. To properly reconciliate morphological and molecular information, maximum-likelihood and parsimony analyses of 79 morphological characters and 18S rDNA sequences were performed for 130 ingroup terminals, broadly sampled to represent the known hypotrich diversity. As result, well-supported and relatively stable clades were recovered, based on which the redefined Hypotricha comprises at least six higher taxa: The "arcuseriids", Holostichida, Parabirojimida, and the "amphisiellids", plus the two large clades Kentrurostylida nov. tax. (Hispidotergida nov. tax. and Simplicitergida nov. tax.) and Diatirostomata nov. tax. ("bistichellids", "kahliellids", Gonostomatida and Dorsomarginalia [Postoralida nov. tax. and Uroleptida]). Each taxon was circumscribed by synapomorphies, of which most were homoplastic, as the natural history of hypotrichs is portrayed by an outstanding quantity of convergences and reversions.
Collapse
Affiliation(s)
- Thiago da Silva Paiva
- Laboratório de Protistologia, Dept. de Zoologia, Inst. de Biologia, CCS, Universidade Federal do Rio de Janeiro - UFRJ, CEP: 21941-590 Ilha do Fundão, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Dong J, Chen X, Liu Y, Ni B, Fan X, Li L, Warren A. An Integrative Investigation of Parabistichella variabilis (Protista, Ciliophora, Hypotrichia) Including Its General Morphology, Ultrastructure, Ontogenesis, and Molecular Phylogeny. J Eukaryot Microbiol 2020; 67:566-582. [PMID: 32460401 DOI: 10.1111/jeu.12809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 11/29/2022]
Abstract
Hypotrichs are a highly differentiated and very diverse group of ciliated protists. Their systematics and taxonomy are challenging and call for detailed investigations on their general morphology, ultrastructure, ontogenesis, and molecular phylogeny. Here, a comprehensive study is conducted on a brackish water population of Parabistichella variabilis using light and electron microscopy and phylogenetic analyses based on small subunit ribosomal DNA sequence data. Its morphology, including the infraciliature, pellicle, nuclei, buccal seal, and extrusomes, is documented. The present findings indicate that in P. variabilis: (i) the cortical granules are extrusomes, which differ from those of other hypotrichs; (ii) the buccal seal is bounded by the plasma membrane and contains a single layer of longitudinal microtubules; (iii) two contractile vacuoles might be present rather than one; and (iv) the pharyngeal disks are bounded by a single membrane. Early-to-middle stages of ontogenesis are described for the first time, enabling the complete characterization of this process. Phylogenetic analyses indicate that Parabistichella variabilis is closely related to several species from different genera, such as Orthoamphisiella breviseries, Uroleptoides magnigranulosus, and Tachysoma pellionellum. However, ultrastructural and gene sequence data for more taxa are needed in order to resolve the systematics of Parabistichella.
Collapse
Affiliation(s)
- Jingyi Dong
- Institute of Evolution & Marine Biodiversity, and College of Fisheries, Ocean University of China, Qingdao, 266003, China.,School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xumiao Chen
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yongqiang Liu
- Institute of Evolution & Marine Biodiversity, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Bing Ni
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lifang Li
- Marine College, Shandong University, Weihai, 264209, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, United Kingdom
| |
Collapse
|
5
|
Documentation of a new hypotrich species in the family Amphisiellidae, Lamtostyla gui n. sp. (Protista, Ciliophora) using a multidisciplinary approach. Sci Rep 2020; 10:3763. [PMID: 32111909 PMCID: PMC7048753 DOI: 10.1038/s41598-020-60327-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/11/2020] [Indexed: 01/04/2023] Open
Abstract
An integrated approach considering both morphologic and molecular data is now required to improve biodiversity estimations and provide more robust systematics interpretations in hypotrichs, a highly differentiated group of ciliates. In present study, we document a new hypotrich species, Lamtostyla gui n. sp., collected from Chongming wetland, Shanghai, China, based on investigations using living observation, protargol staining, scanning and transmission electron microscopy, and gene sequencing. The new species is mainly recognized by having a short amphisiellid median cirral row composed of four cirri, three frontoventral cirri, three dorsal kinetids, four to eight macronuclear nodules, and small colorless cortical granules distributed as rosettes around dorsal bristles. Transmission electron microscope observation finds the associated microtubules of cirri and pharyngeal discs of L. gui are distinct from those in other hypotrichs. Morphogenesis of this species indicates that parental adoral membranelles retained intact or partial renewed is a potential feature to separate Lamtostyla granulifera-group and Lamtostyla lamottei-group. Phylogenetic analysis based on small subunit ribosomal RNA (rRNA) gene shows that this molecular marker is not useful to resolve phylogenetic relationships of the genus Lamtostyla, as well as many other hypotrichous taxa. We additionally characterize the internal transcribed spacers (ITS) region and the almost complete large subunit rRNA, which will be essential for future studies aimed at solving phylogenetic problems of Lamtostyla, or even the family Amphisiellidae. As a final remark, the critical screening of GenBank using ITS genes of our organism allows us to recognize a large amount of hypotrichous sequences have been misclassified as fungi. This observation suggests that hypotrichs could be frequently found in fungi-rich environment and overlooked by fungal specialists.
Collapse
|
6
|
Dong J, Li L, Fan X, Ma H, Warren A. Two Urosoma species (Ciliophora, Hypotrichia): A multidisciplinary approach provides new insights into their ultrastructure and systematics. Eur J Protistol 2019; 72:125661. [PMID: 31841799 DOI: 10.1016/j.ejop.2019.125661] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022]
Abstract
The general morphology and ultrastructure of two soil hypotrichous ciliates, Urosoma emarginata and U. salmastra, were investigated using light microscopy, scanning electron microscopy and transmission electron microscopy. Phylogenetic analyses, based on the newly sequenced small subunit ribosomal (SSU) rRNA genes, were conducted on three U. emarginata populations and one U. salmastra population. Our findings support for the validity of Perilemmaphora Berger, 2008, a rankless taxon comprising spirotrich ciliates having a perilemma. The cortical granules of both species are extrusomes representing a new type of mucocyst in U. emarginata and possibly a new type of pigmentocyst in U. salmastra. Additionally, the lithosomes were revealed as subglobose structures composed of a low electron-dense, homogeneous inner part and an electron-dense outer part. The ultrastructural features of the cortical granules, together with ontogenetic and molecular phylogenetic data, suggest that the genus Urosoma might need to be divided. It is posited that ultrastructural features of hypotrichous ciliates in general may have important taxonomic value warranting further investigation.
Collapse
Affiliation(s)
- Jingyi Dong
- Institute of Evolution and Marine Biodiversity and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lifang Li
- Marine College, Shandong University, Weihai 264209, China
| | - Xinpeng Fan
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Honggang Ma
- Institute of Evolution and Marine Biodiversity and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| |
Collapse
|
7
|
Wang C, Pan X, Fan Y, Chen Y, Mu W. The oxidative stress response of oxytetracycline in the ciliate Pseudocohnilembus persalinus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:35-42. [PMID: 28881225 DOI: 10.1016/j.etap.2017.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 05/12/2023]
Abstract
Oxytetracycline (OTC) is commonly employed in fish farms to prevent bacterial infections in China, and because of their widely and intensive use, the potential harmful effects on organisms in aquatic environment are of great concern. Ciliates play an important role in aquatic food webs as secondary producers, and Pseudocohnilembus persalinus, is one kind of them which are easily found in fish farms, surviving in polluted water. Therefore, using P. persalinus as experimental models, this study investigated the effects of oxytetracycline (OTC) on the growth, antioxidant system and morphological damage in pollution-resistant ciliates species. Our results showed that the 96-h EC50 values for OTC of P. persalinus was 21.38mgL-1. The increased level of SOD and GSH during 96h OTC stress was related to an adaptive response under oxidative stress induced in ciliates. Additionally, sod1, sod2 and sod3 exhibited a significant increased expression level compared to control group at 24h treatment, indicating a promoting of dense system in ciliates at this exposure time. However, only sod1 and sod2 showed raised expression level at 48h stress, showing the different sensitive of gene isoforms to some extent. With OTC treatment, damage of regular wrinkles, shrunk, twisted on the cell surface, even forming cyst of scuticociliatid ciliate cells were firstly observed by SEM (scanning electron microscope) in this study. Overall, physiological, molecular and morphological information on the toxicological studies of ciliates and more information on possibility of ciliates as indicators of contamination were provided in this study.
Collapse
Affiliation(s)
- Chongnv Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xuming Pan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yawen Fan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Ying Chen
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| | - Weijie Mu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|