1
|
Sun B, Cai F, Yu L, An R, Wei B, Li M. Quercetin inhibits ferroptosis through the SIRT1/Nrf2/HO-1 signaling pathway and alleviates asthma disease. Transl Pediatr 2024; 13:1747-1759. [PMID: 39524399 PMCID: PMC11543135 DOI: 10.21037/tp-24-193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Quercetin (QCT) is a bioflavonoid derived from vegetables and fruits that has anti-inflammatory and anti-ferroptosis effects against various diseases. Previous studies have shown that QCT modulates the production of cellular inflammatory factors in asthma models and delays the development of chronic airway inflammation. However, the regulatory mechanism of QCT, a traditional Chinese medicine, in the treatment of asthma has not been elucidated. The aim of the present study is to investigate whether QCT can inhibit ferroptosis via the SIRT1/Nrf2 pathway and play a therapeutic role in asthma. Methods An ovalbumin-induced mouse asthma model was established, and its function was verified by hematoxylin eosin staining, enzyme linked immunosorbent assay, ferric ion assay, malondialdehyde and superoxide dismutase assays, dihydroethidium staining, immunohistochemical staining, western blotting, and quantitative real-time polymerase chain reaction. Results Our results indicated that an ovalbumin-induced asthma mouse model had been successfully established and that QCT inhibited inflammation, reduced serum levels of inflammatory factors IL-4, IL-5 and IL-13, increased superoxide dismutase levels in lung tissue homogenates, and reduced malondialdehyde and ferric ion production in asthmatic mice. In addition, we found that QCT was able to reverse the expression of SIRT1, Nrf2 and HO-1 in an in vivo asthma mouse model. Conclusions The data from this study indicate that QCT can alleviate asthma, and its mechanism is related to the regulation of ferroptosis, oxidative stress, and the expression of SIRT1 protein.
Collapse
Affiliation(s)
- Bo Sun
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, China
- Post-graduate College, China Medical University, Shenyang, China
| | - Fei Cai
- Post-graduate College, China Medical University, Shenyang, China
| | - Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Ran An
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Bing Wei
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Miao Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T. Therapeutic effect of targeted antioxidant natural products. DISCOVER NANO 2024; 19:144. [PMID: 39251461 PMCID: PMC11383917 DOI: 10.1186/s11671-024-04100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
The exploration of targeted therapy has proven to be a highly promising avenue in the realm of drug development research. The human body generates a substantial amount of free radicals during metabolic processes, and if not promptly eliminated, these free radicals can lead to oxidative stress, disrupting homeostasis and potentially contributing to chronic diseases and cancers. Before the development of contemporary medicine with synthetic pharmaceuticals and antioxidants, there was a long-standing practice of employing raw, natural ingredients to cure a variety of illnesses. This practice persisted even after the active antioxidant molecules were known. The ability of natural antioxidants to neutralise excess free radicals in the human body and so prevent and cure a wide range of illnesses. The term "natural antioxidant" refers to compounds derived from plants or other living organisms that have the ability to control the production of free radicals, scavenge them, stop free radical-mediated chain reactions, and prevent lipid peroxidation. These compounds have a strong potential to inhibit oxidative stress. Phytochemicals (antioxidants) derived from plants, such as polyphenols, carotenoids, vitamins, and others, are central to the discussion of natural antioxidants. Not only may these chemicals increase endogenous antioxidant defenses, affect communication cascades, and control gene expression, but they have also shown strong free radical scavenging properties. This study comprehensively summarizes the primary classes of natural antioxidants found in different plant and animal source that contribute to the prevention and treatment of diseases. Additionally, it outlines the research progress and outlines future development prospects. These discoveries not only establish a theoretical groundwork for pharmacological development but also present inventive ideas for addressing challenges in medical treatment.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sihao Jin
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Zhenzhen Dong
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Asiwe JN, Ojetola AA, Ekene NE, Osirim E, Nnamudi AC, Oritsemuelebi B, Onuelu JE, Asiwe N, Eruotor HO, Inegbenehi S. Pleiotropic attenuating effect of Ginkgo biloba against isoprenaline-induced myocardial infarction via improving Bcl-2/mTOR/ERK1/2/Na +, K +-ATPase activities. CHINESE HERBAL MEDICINES 2024; 16:282-292. [PMID: 38706831 PMCID: PMC11064635 DOI: 10.1016/j.chmed.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 11/23/2023] [Indexed: 05/07/2024] Open
Abstract
Objective Myocardial infarction (MI) is linked to an imbalance in the supply and demand of blood oxygen in the heart muscles. Beta-blockers and calcium antagonists are just two of the common medications used to treat MI. However, these have reportedly been shown to be either ineffective or to have undesirable side effects. Extract of Ginkgo biloba leaves (GBE), a Chinese herbal product offers special compatibility benefits in therapeutic settings relating to inflammatory diseases and oxidative stress. In order to better understand how GBE affects MI in rats insulted by isoprenaline (ISO), the current study was designed. Methods The heart weight index, serum lipid profile, cardiac marker enzymes, endogenous antioxidants [catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), nitrites and malondialdehyde (MDA)], inflammatory mediators [tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6)], immunohistochemical expressions of B-cell lymphoma factor-2 (Bcl-2), extracellular signal-regulated kinase (ERK1/2), and mammalian target of rapamycin (mTOR) and histopathological analysis were used to assess the cardioprotective properties of GBE. Results The findings showed that GBE effectively attenuated myocardial infarction by boosting the body's natural antioxidant defense system and reducing the release of inflammatory cytokines as well as heart injury marker enzymes. The expression of Bcl-2, ERK1/2 and mTOR was increased while the histomorphological alterations were reversed. Conclusion The cardioprotective effects of GBE may be due to a mechanism involving increased Bcl-2/mTOR/ERK1/2/Na+, K+-ATPase activity.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, Delta State University, Abraka 1, Nigeria
- Department of Physiology, University of Ibadan, Ibadan 3017, Nigeria
| | | | | | | | | | | | | | - Nicholas Asiwe
- Department of Anatomy, University of Port Harcourt, Choba 5323, Nigeria
| | | | - Saviour Inegbenehi
- Department of Biochemistry, PAMO University of Medical Sciences, Port Harcourt 500211, Nigeria
| |
Collapse
|
4
|
Nalika N, Waseem M, Kaushik P, Salman M, Andrabi SS, Parvez S. Role of melatonin and quercetin as countermeasures to the mitochondrial dysfunction induced by titanium dioxide nanoparticles. Life Sci 2023:121403. [PMID: 36669677 DOI: 10.1016/j.lfs.2023.121403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
AIM Due to the growing commercialization of titanium dioxide nanoparticles (TNPs), it is necessary to use these particles in a manner that is safe, healthy and environmental friendly. Through reactive oxygen species (ROS) generation, it has been discovered that TNPs have a harmful effect on the brain. The aim of this study is to provide valuable insights into the possible mechanisms of TNPs induced mitochondrial dysfunction in brain and its amelioration by nutraceuticals, quercetin (QR) and melatonin (Mel) in in vitro and in vivo conditions. MATERIALS AND METHODS Whole brain mitochondrial sample was used for in-vitro evaluation. Pre-treatment of QR (30 μM) and Mel (100 μM) at 25 °C for 1 h was given prior to TNPs (50 μg/ml) exposure. For in-vivo study, male Wistar rats were divided into four groups. Group I was control and group II was exposed to TNPs (5 mg/kg b.wt., i.v.). QR (5 mg/kg b.wt.) and Mel (5 mg/kg b.wt.) were given orally as pre-treatment in groups III and IV, respectively. Biochemical parameters, neurobehavioural paradigms, mitochondrial respiration, neuronal architecture assessment were assessed. KEY FINDINGS QR and Mel restored the mitochondrial oxidative stress biomarkers in both the studies. Additionally, these nutraceuticals resuscitated the neurobehavioural alterations and restored the neuronal architecture alterations in TNPs exposed rats. The mitochondrial dysfunction induced by TNPs was also ameliorated by QR and Mel by protecting the mitochondrial complex activity and mitochondrial respiration rate. SIGNIFICANCE Results of the study demonstrated that QR and Mel ameliorated mitochondrial mediated neurotoxic effects induced by TNPs exposure.
Collapse
Affiliation(s)
- Nandini Nalika
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohammad Waseem
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohd Salman
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Syed Suhail Andrabi
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
5
|
Ali HH, Ahmed ZA, Aziz TA. Effect of Telmisartan and Quercetin in 5 Fluorouracil-Induced Renal Toxicity in Rats. J Inflamm Res 2022; 15:6113-6124. [PMID: 36386583 PMCID: PMC9651059 DOI: 10.2147/jir.s389017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 02/18/2024] Open
Abstract
Purpose The present study was designed to evaluate the possible synergistic effects of telmisartan and quercetin in 5 fluorouracil (5-FU) induced nephrotoxicity in rats. Methodology Forty male rats were randomly divided into five groups: The negative control group, the positive control group that received 5-FU, the telmisartan group, receiving 10 mg/kg, the quercetin group, receiving 80 mg/kg, and the combination of telmisartan and quercetin group. All the treatments were given orally for 14 days. A single intraperitoneal injection of 5-FU (150 mg/kg) on day 13 of the experiment was given except for the negative control group. On the 15th day after scarification, approximately 5 mL of blood was collected and used for measurement of CBC, urea, creatinine, and uric acid. The kidneys were used for histopathological examination and for the measurement of kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), Cystatin C (Cys-C), and total antioxidant capacity (TAOC). Results The combination therapy significantly attenuated the levels of tissue KIM-1, NGAL, Cys-C, and serum uric acid as well as blood inflammatory markers, Neutrophil/Lymphocyte (NLR), Monocyte/Lymphocyte (MLR), and Platelets/Lymphocyte ratios (PLR), and restored the TAOC. The histopathological findings greatly support the biochemical tests. Conclusion The results strongly suggest the renoprotective effects of telmisartan and quercetin in combination against the nephrotoxic effect of 5-FU through decreasing the levels of KIM-1, NGAL, and cys-C, and the novel inflammatory markers of kidney injury like NLP, MLR, and PLR, as well as decreasing uric acid and restoring the TAOC. The proposed mechanism could be the additive inhibitory effect on RAS provided by both telmisartan and quercetin.
Collapse
Affiliation(s)
| | - Zheen Aorahman Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq
| | - Tavag Ahmed Aziz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq
| |
Collapse
|
6
|
Effects of Lycopene Attenuating Injuries in Ischemia and Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9309327. [PMID: 36246396 PMCID: PMC9568330 DOI: 10.1155/2022/9309327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Tissue and organ ischemia can lead to cell trauma, tissue necrosis, irreversible damage, and death. While intended to reverse ischemia, reperfusion can further aggravate an ischemic injury (ischemia-reperfusion injury, I/R injury) through a range of pathologic processes. An I/R injury to one organ can also harm other organs, leading to systemic multiorgan failure. A type of carotenoid, lycopene, has been shown to treat and prevent many diseases (e.g., rheumatoid arthritis, cancer, diabetes, osteoporosis, male infertility, neurodegenerative diseases, and cardiovascular disease), making it a hot research topic in health care. Some recent researches have suggested that lycopene can evidently ameliorate ischemic and I/R injuries to many organs, but few clinical studies are available. Therefore, it is essential to review the effects of lycopene on ischemic and I/R injuries to different organs, which may help further research into its potential clinical applications.
Collapse
|
7
|
Antioxidant Cardioprotection against Reperfusion Injury: Potential Therapeutic Roles of Resveratrol and Quercetin. Molecules 2022; 27:molecules27082564. [PMID: 35458766 PMCID: PMC9027566 DOI: 10.3390/molecules27082564] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion myocardial damage is a paradoxical tissue injury occurring during percutaneous coronary intervention (PCI) in acute myocardial infarction (AMI) patients. Although this damage could account for up to 50% of the final infarct size, there has been no available pharmacological treatment until now. Oxidative stress contributes to the underlying production mechanism, exerting the most marked injury during the early onset of reperfusion. So far, antioxidants have been shown to protect the AMI patients undergoing PCI to mitigate these detrimental effects; however, no clinical trials to date have shown any significant infarct size reduction. Therefore, it is worthwhile to consider multitarget antioxidant therapies targeting multifactorial AMI. Indeed, this clinical setting involves injurious effects derived from oxygen deprivation, intracellular pH changes and increased concentration of cytosolic Ca2+ and reactive oxygen species, among others. Thus, we will review a brief overview of the pathological cascades involved in ischemia-reperfusion injury and the potential therapeutic effects based on preclinical studies involving a combination of antioxidants, with particular reference to resveratrol and quercetin, which could contribute to cardioprotection against ischemia-reperfusion injury in myocardial tissue. We will also highlight the upcoming perspectives of these antioxidants for designing future studies.
Collapse
|
8
|
Kozłowska A, Szostak-Węgierek D. Targeting Cardiovascular Diseases by Flavonols: An Update. Nutrients 2022; 14:1439. [PMID: 35406050 PMCID: PMC9003055 DOI: 10.3390/nu14071439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Flavonols are one of the most plentiful flavonoid subclasses found in natural products and are extensively used as dietary supplements. Numerous in vitro and in vivo studies have shown the cardioprotective properties of flavonols, especially quercetin. This group of substances exerts positive impacts primarily due to their antiatherogenic, antithrombotic, and antioxidant activities. The potential of flavonols to promote vasodilation and regulation of apoptotic processes in the endothelium are other beneficial effects on the cardiovascular system. Despite promising experimental findings, randomized controlled trials and meta-analyses have yielded inconsistent results on the influence of these substances on human cardiovascular parameters. Thus, this review aims to summarize the most recent clinical data on the intake of these substances and their effects on the cardiovascular system. The present study will help clinicians and other healthcare workers understand the value of flavonol supplementation in both subjects at risk for cardiovascular disease and patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Aleksandra Kozłowska
- Department of Social Medicine and Public Health, Medical University of Warsaw, Oczki Str. 3, 02-007 Warsaw, Poland;
| | - Dorota Szostak-Węgierek
- Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, E Ciołka Str. 27, 01-445 Warsaw, Poland
| |
Collapse
|