1
|
Deolikar S, Jawdekar A, Saraf T, Thribhuvanan L, Tirupathi S. Comparative Evaluation of the Antimicrobial Efficacy of Elettaria cardamomum (0.5%) Mouthwash, Camellia sinensis (0.5%) Mouthwash, and 0.12% Chlorhexidine Gluconate Mouthwash against Streptococcus mutans: An In Vitro Study. Int J Clin Pediatr Dent 2024; 17:461-466. [PMID: 39144166 PMCID: PMC11320813 DOI: 10.5005/jp-journals-10005-2832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Aim The in vitro study aimed to evaluate and compare the antimicrobial efficacy of Elettaria cardamomum (0.5%) mouthwash, Camellia sinensis (0.5%) mouthwash, and 0.12% chlorhexidine gluconate mouthwash against Streptococcus mutans. Materials and methods A total of 60 samples of the five mouthwash preparations were prepared to check for their antimicrobial efficacy. The zone of inhibition (ZOI) against S. mutans was measured as a diameter in mm, and the minimum inhibitory concentration (MIC) of mouthwash preparations was measured as μg/mL. All the groups were compared statistically using the Mann-Whitney U test and the Kruskal-Wallis test. Results The highest ZOI was observed in group V chlorhexidine gluconate [mean: 20.8, standard deviation (SD): 0.58], followed by group III C. sinensis (alcohol-free) (mean: 15.5, SD: 0.67), group IV C. sinensis (alcohol-based) (mean: 14.08, SD: 0.66), and group II E. cardamomum (alcohol-based) (mean: 13.2, SD: 0.45). The least ZOI was observed in group I E. cardamomum (alcohol-free) (mean: 10.7, SD: 0.45). This difference was statistically significant (p < 0.01). The MIC was similar in all the groups (p = 0.13). Conclusion Chlorhexidine gluconate 0.12% mouthwash showed the best antimicrobial action; however, C. sinensis mouthwash showed potential against S. mutans. E. cardamomum mouthwash exhibited limited antimicrobial activity. How to cite this article Deolikar S, Jawdekar A, Saraf T, et al. Comparative Evaluation of the Antimicrobial Efficacy of Elettaria cardamomum (0.5%) Mouthwash, Camellia sinensis (0.5%) Mouthwash, and 0.12% Chlorhexidine Gluconate Mouthwash against Streptococcus mutans: An In Vitro Study. Int J Clin Pediatr Dent 2024;17(4):461-466.
Collapse
Affiliation(s)
- Sayali Deolikar
- Department of Pedodontics and Preventive Dentistry, Dr DY Patil Dental College and Hospital, Dr DY Patil Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Ashwin Jawdekar
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth Dental College and Hospital, Bharati Vidyapeeth (Deemed to be University), Mumbai, Maharashtra, India
| | - Tanvi Saraf
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth Dental College and Hospital, Bharati Vidyapeeth (Deemed to be University), Mumbai, Maharashtra, India
| | - Lakshmi Thribhuvanan
- Department of Pedodontics and Preventive Dentistry, Dr DY Patil Dental College and Hospital, Dr DY Patil Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Sunnypriyatham Tirupathi
- Department of Pedodontics and Preventive Dentistry, Saveetha Dental College and Hospital, Saveetha Institute of Medical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu; Dr DY Patil Dental College and Hospital, Dr DY Patil Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
2
|
Kalinovskii AP, Sintsova OV, Gladkikh IN, Leychenko EV. Natural Inhibitors of Mammalian α-Amylases as Promising Drugs for the Treatment of Metabolic Diseases. Int J Mol Sci 2023; 24:16514. [PMID: 38003703 PMCID: PMC10671682 DOI: 10.3390/ijms242216514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
α-Amylase is a generally acknowledged molecular target of a distinct class of antidiabetic drugs named α-glucosidase inhibitors. This class of medications is scarce and rather underutilized, and treatment with current commercial drugs is accompanied by unpleasant adverse effects. However, mammalian α-amylase inhibitors are abundant in nature and form an extensive pool of high-affinity ligands that are available for drug discovery. Individual compounds and natural extracts and preparations are promising therapeutic agents for conditions associated with impaired starch metabolism, e.g., diabetes mellitus, obesity, and other metabolic disorders. This review focuses on the structural diversity and action mechanisms of active natural products with inhibitory activity toward mammalian α-amylases, and emphasizes proteinaceous inhibitors as more effective compounds with significant potential for clinical use.
Collapse
Affiliation(s)
- Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Oksana V. Sintsova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia; (O.V.S.); (I.N.G.)
| | - Irina N. Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia; (O.V.S.); (I.N.G.)
| | - Elena V. Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia; (O.V.S.); (I.N.G.)
| |
Collapse
|
3
|
Damhuji D, Suryana B, Ayatullah MI. Antibacterial Effects of Steeped White Tea, Black Tea, and Green Tea against Streptococcus mutans and Plaque Accumulation. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Tea is the most consumed beverage in the world after water. Tea (Camellia sinensis) is native to Southeast Asia and is now available in more than 30 countries. Tea has various health properties. Tea has an active component, namely catechins, which can inhibit the growth of Streptococcus mutans as a component of dental plaque formation.
AIM: This study aims to determine the antibacterial effect of steeped white tea, black tea, and green tea on S. mutans and plaque accumulation.
METHODS: The research used a quasi-experimental design with pre-test and post-test group design. The population was students of the Department of Dental Nursing. Purposive sampling technique is used with a sample size of 48 students who were divided into three parts of the sample group for the 2.5% concentration of tea mouthwash treatment. The analysis used paired t-test to see the antibacterial effect and differences in three-variable test followed by Kruskal–Wallis test.
RESULTS: The results showed that the mouth rinses of steeped white tea, black tea, and green tea were effective in reducing S. mutans and plaque accumulation on teeth. There is a significant difference in the inhibition zone of S. mutans against the three types of tea, and white has the largest inhibition zone. As for plaque accumulation, there is no difference between the three types of tea.
CONCLUSIONS: It can be concluded that mouth rinsing with steeping white tea, black tea, and green tea with a concentration of 2.5% has antibacterial properties that can inhibit S. mutans and plaque accumulation.
Collapse
|
4
|
Fernández CE, Luo TL, González-Cabezas C, Rickard AH. Unsweetened and Sucrose-Sweetened Black and Green Tea Modifies the Architecture of In vitro Oral Biofilms. Arch Oral Biol 2022; 135:105368. [DOI: 10.1016/j.archoralbio.2022.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/02/2022]
|
5
|
Goyal D, Ahmad S, Mahmood A, Chander Sharma S. Interactions of dextransucrase purified from Streptococcus mutans 890 with plant polyphenols. Biochem Biophys Rep 2021; 26:100980. [PMID: 33748439 PMCID: PMC7967010 DOI: 10.1016/j.bbrep.2021.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/02/2022] Open
Abstract
Plant polyphenols have been extensively studied for their chemopreventive properties for human health. Dextransucrase plays an essential role in synthesizing exopolysaccharides from its exclusive substrate sucrose in Streptococcus mutans. In the present study, the effect of polyphenols gallic acid and tannic acid was investigated on the dextransucrase activity. The enzyme was purified by ethanol precipitation followed by column chromatography by Sephadex G-200 gel chromatography, followed by PEG-400 treatment. The purified enzyme exhibited 52 fold enrichment with 17.5% yield and specific activity of 3.54 Units/mg protein. On SDS-PAGE enzyme protein gave a single band with a molecular weight of 160 kDa. Dextransucrase activity was inhibited 80–90% by 0.04 mM tannic acid (TA) or 0.4 mM gallic acid (GA) suggesting that tannic acid has 10- fold more inhibitory potential than gallic acid on the activity of dextransucrase. CD/ORD studies revealed modifications in the tertiary structure of enzyme protein in presence of tannic acid and gallic acid, which were further confirmed by fluorescence spectra of the protein in presence of tannic acid. These results suggest that inhibition of dextransucrase activity in S. mutans by polyphenols may have potential applications in the prevention and control of dental caries. Dextransuccrase an important enzyme of S. mutans is involved in the metabolism of sucrose. Purified enzyme is inhibited (80-90%) by plant polyphenols. Observed inhibition is due to change in teritary structure. S. mutans is an important cariogenic agent. Plant polyphenols are good anticariogenic agents.
Collapse
Affiliation(s)
- Dimple Goyal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Shabeer Ahmad
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Akhtar Mahmood
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | |
Collapse
|
6
|
Kim MA, Kim JH, Nam OH. Tea extracts differentially inhibit Streptococcus mutans and Streptococcus sobrinus biofilm colonization depending on the steeping temperature. BIOFOULING 2020; 36:256-265. [PMID: 32326756 DOI: 10.1080/08927014.2020.1755429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to evaluate the effects of tea extracts on oral biofilm colonization depending on steeping temperature. S. mutans and S. sobrinus were cultured and treated with green or black tea extracts prepared under different steeping conditions. Biofilm formation, glucosyltransferase (GTF) levels, bacterial growth, and acidogenicity were evaluated. Biofilms were also assessed by gas chromatography-mass spectrometry and confocal laser scanning microscopy. All extracts with hot steeping showed higher inhibitory effects on biofilm formation and cell viability and lower GTF levels compared with those with cold steeping (p < 0.05). Hot steeping significantly reduced bacterial growth (p < 0.05) and maintained the pH. Catechins were only identified from hot steeping extracts. Within the limits of this study, extracts with cold steeping showed lower inhibitory effects on oral biofilms. The different effects between steeping extracts may be attributed to the difference in catechins released from tea extracts under the different steep conditions.
Collapse
Affiliation(s)
- Mi-Ah Kim
- Department of Conservative Dentistry, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jae-Hwan Kim
- Department of Pediatric Dentistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ok Hyung Nam
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:E6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|
8
|
Sintsova O, Gladkikh I, Kalinovskii A, Zelepuga E, Monastyrnaya M, Kim N, Shevchenko L, Peigneur S, Tytgat J, Kozlovskaya E, Leychenko E. Magnificamide, a β-Defensin-Like Peptide from the Mucus of the Sea Anemone Heteractis magnifica, Is a Strong Inhibitor of Mammalian α-Amylases. Mar Drugs 2019; 17:md17100542. [PMID: 31546678 PMCID: PMC6835510 DOI: 10.3390/md17100542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/07/2023] Open
Abstract
Sea anemones’ venom is rich in peptides acting on different biological targets, mainly on cytoplasmic membranes and ion channels. These animals are also a source of pancreatic α-amylase inhibitors, which have the ability to control the glucose level in the blood and can be used for the treatment of prediabetes and type 2 diabetes mellitus. Recently we have isolated and characterized magnificamide (44 aa, 4770 Da), the major α-amylase inhibitor of the sea anemone Heteractis magnifica mucus, which shares 84% sequence identity with helianthamide from Stichodactyla helianthus. Herein, we report some features in the action of a recombinant analog of magnificamide. The recombinant peptide inhibits porcine pancreatic and human saliva α-amylases with Ki’s equal to 0.17 ± 0.06 nM and 7.7 ± 1.5 nM, respectively, and does not show antimicrobial or channel modulating activities. We have concluded that the main function of magnificamide is the inhibition of α-amylases; therefore, its functionally active recombinant analog is a promising agent for further studies as a potential drug candidate for the treatment of the type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Oksana Sintsova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Irina Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Aleksandr Kalinovskii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
- School of Natural Sciences, Far Eastern Federal University, 8, Sukhanova St, Vladivostok 690090, Russia.
| | - Elena Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Margarita Monastyrnaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Natalia Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Lyudmila Shevchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, Leuven B-3000, Belgium.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, Leuven B-3000, Belgium.
| | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| |
Collapse
|
9
|
Wang S, Wang Y, Wang Y, Duan Z, Ling Z, Wu W, Tong S, Wang H, Deng S. Theaflavin-3,3'-Digallate Suppresses Biofilm Formation, Acid Production, and Acid Tolerance in Streptococcus mutans by Targeting Virulence Factors. Front Microbiol 2019; 10:1705. [PMID: 31404326 PMCID: PMC6676744 DOI: 10.3389/fmicb.2019.01705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
As one of the most important cariogenic pathogens, Streptococcus mutans has strong abilities to form biofilms, produce acid and tolerate acid. In present study, we found that theaflavin-3,3′-digallate (TF3) had an inhibitory effect on S. mutans UA159 in vitro. Visualized by field emission-scanning electron microscopy, the suppressed formation of S. mutans biofilms grown with TF3 at sub-inhibitory concentrations could be attributed to the reduced biofilm matrix, which was proven to contain glucans and extracellular DNA (eDNA). Glucan-reduced effect of TF3 was achieved by down-regulating expression levels of gtfB, gtfC, and gtfD encoding glucosyltransferases. Besides, TF3 reduced eDNA formation of S. mutans by negatively regulating lrgA, lrgB, and srtA, which govern cell autolysis and membrane vesicle components. Furthermore, TF3 also played vital roles in antagonizing preformed biofilms of S. mutans. Bactericidal effects of TF3 became significant when its concentrations increased more than twofold of minimum inhibitory concentration (MIC). Moreover, the capacities of S. mutans biofilms to produce acid and tolerate acid were significantly weakened by TF3 at MIC. Based on real-time PCR (RT-PCR) analysis, the mechanistic effects of TF3 were speculated to comprise the inhibition of enolase, lactate dehydrogenase, F-type ATPase and the agmatine deiminase system. Moreover, TF3 has been found to downregulate LytST, VicRK, and ComDE two component systems in S. mutans, which play critical roles in the regulatory network of virulence factors. Our present study found that TF3 could suppress the formation and cariogenic capacities of S. mutans biofilms, which will provide new strategies for anti-caries in the future.
Collapse
Affiliation(s)
- Sa Wang
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Wang
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Wang
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhuhui Duan
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenzhi Wu
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Suman Tong
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huiming Wang
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuli Deng
- Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|