1
|
Huang X, Bao J, Yang M, Li Y, Liu Y, Zhai Y. The role of Lactobacillus plantarum in oral health: a review of current studies. J Oral Microbiol 2024; 16:2411815. [PMID: 39444695 PMCID: PMC11497578 DOI: 10.1080/20002297.2024.2411815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 10/25/2024] Open
Abstract
Background Oral non-communicable diseases, particularly dental caries and periodontal disease, impose a significant global health burden. The underlying microbial dysbiosis is a prominent factor, driving interest in strategies that promote a balanced oral microbiome. Lactobacillus plantarum, a gram-positive lactic acid bacterium known for its adaptability, has gained attention for its potential to enhance oral health. Recent studies have explored the use of probiotic L. plantarum in managing dental caries, periodontal disease, and apical periodontitis. However, a comprehensive review on its effects in this context is still lacking. Aims This narrative review evaluates current literature on L. plantarum's role in promoting oral health and highlights areas for future research. Content In general, the utilization of L. plantarum in managing non-communicable biofilm-dependent oral diseases is promising, but additional investigations are warranted. Key areas for future study include: exploring its mechanisms of action, identifying optimal strains or strain combinations of L. plantarum, determining effective delivery methods and dosages, developing commercial antibacterial agents from L. plantarum, and addressing safety considerations related to its use in oral care.
Collapse
Affiliation(s)
- Xinyan Huang
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Jianhang Bao
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| | - Mingzhen Yang
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| | - Yingying Li
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Youwen Liu
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, China
| |
Collapse
|
2
|
Lei Q, Divakarla SK, Winsley T, Roux S, Chrzanowski W. Bioprocessing strategies for enhanced probiotic extracellular vesicle production: culture condition modulation. Front Bioeng Biotechnol 2024; 12:1441552. [PMID: 39280339 PMCID: PMC11392866 DOI: 10.3389/fbioe.2024.1441552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Probiotic extracellular vesicles are biochemically active structures responsible for biological effects elicited by probiotic bacteria. Lactobacillus spp., which are abundant in the human body (e.g., gut), are known to have anti-inflammatory and antimicrobial properties, and are commonly used in food products, supplements, and in discovery research. There is increasing evidence that Lactobacillus-derived extracellular vesicles (LREVs) have potent immunomodulatory capacity that is superior to probiotics themselves. However, key mechanistic insights into the process that controls production and thus, the function of LREVs, are lacking. Currently, it is unknown how the probiotic culture microenvironment orchestrates the type, yield and function of LREVs. Here, we investigated how multifactor modulation of the biomanufacturing process controls the yield and biological functionality of the LREVs. To achieve this, we selected Lacticaseibacillus rhamnosus as the candidate probiotic, initially cultivated under traditional culture conditions, i.e., 100% broth concentration and pH 5.5. Subsequently, we systematically modified the culture conditions of the probiotic by adjusting three critical process parameters: (1) culture medium pH (pH 3.5, 5.5 and 7.5), (2) growth time (48 and 72 h), and (3) broth concentration (50% and 10% of original broth concentration). EVs were then isolated separately from each condition. The critical quality attributes (CQA) of LREVs, including physical characteristics (size, distribution, concentration) and biological composition (protein, carbohydrate, lipid), were analysed. Functional impacts of LREVs on human epidermal keratinocytes and Staphylococcus aureus were also assessed as CQA. Our findings show that the production of LREVs is influenced by environmental stresses induced by the culture conditions. Factors like broth concentration, pH levels, and growth time significantly impact stress levels in L. rhamnosus, affecting both the production and composition of LREVs. Additionally, we have observed that LREVs are non-toxicity for keratinocytes, the major cell type of the epidermis, and possess antimicrobial properties against S. aureus, a common human skin pathogen. These properties are prerequisites for the potential application of EVs to treat skin conditions, including infected wounds. However, the functionality of LREVs depends on the culture conditions and stress levels experienced by L. rhamnosus during production. Understanding this relationship between the culture microenvironment, probiotic stress response, and LREV characteristics, can lead to the biomanufacturing of customised probiotic-derived EVs for various medical and industrial applications.
Collapse
Affiliation(s)
- Qingyu Lei
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, VIC, Australia
| | - Shiva Kamini Divakarla
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, VIC, Australia
- BiomeCentric PTY LTD., Molendinar, QLD, Australia
| | | | - Shaun Roux
- BiomeCentric PTY LTD., Molendinar, QLD, Australia
| | - Wojciech Chrzanowski
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, VIC, Australia
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Division of Clinical Immunology, Karolinska Institute, Stockholm, Sweden
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Shi Z, Yang F, Hu Y, Pang Q, Shi L, Du T, Cao Y, Song B, Yu X, Cao Z, Ye Z, Liu C, Yu R, Chen X, Zhu Y, Pang Q. An oxidized dextran-composite self-healing coated magnesium scaffold reduces apoptosis to induce bone regeneration. Carbohydr Polym 2024; 327:121666. [PMID: 38171658 DOI: 10.1016/j.carbpol.2023.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Self-healing coatings have shown promise in controlling the degradation of scaffolds and addressing coating detachment issues. However, developing a self-healing coating for magnesium (Mg) possessing multiple biological functions in infectious environments remains a significant challenge. In this study, a self-healing coating was developed for magnesium scaffolds using oxidized dextran (OD), 3-aminopropyltriethoxysilane (APTES), and nano-hydroxyapatite (nHA) doped micro-arc oxidation (MHA), named OD-MHA/Mg. The results demonstrated that the OD-MHA coating effectively addresses coating detachment issues and controls the degradation of Mg in an infectious environment through self-healing mechanisms. Furthermore, the OD-MHA/Mg scaffold exhibits antibacterial, antioxidant, and anti-apoptotic properties, it also promotes bone repair by upregulating the expression of osteogenesis genes and proteins. The findings of this study indicate that the OD-MHA coated Mg scaffold possessing multiple biological functions presents a promising approach for addressing infectious bone defects. Additionally, the study showcases the potential of polysaccharides with multiple biological functions in facilitating tissue healing even in challenging environments.
Collapse
Affiliation(s)
- Zewen Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China; Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lin Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yuhao Cao
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Baiyang Song
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xueqiang Yu
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Zhaoxun Cao
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhewei Ye
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Liu
- Ningbo Branch of Chinese Academy of Ordnance Science, Ningbo 315100, China
| | - Rongyao Yu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianjun Chen
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Qingjiang Pang
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
4
|
Jang HJ, Kim JH, Lee NK, Paik HD. Probiotic Lactobacillus plantarum Ln4 Showing Antimicrobial and Antibiofilm Effect against Streptococcus mutans KCTC 5124 Causing Dental Caries. J Microbiol Biotechnol 2024; 34:116-122. [PMID: 37674399 PMCID: PMC10840488 DOI: 10.4014/jmb.2306.06001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Dental caries has known as an infectious disease that is considered a serious global public health problem. Recently, report indicate that probiotics play a vital role in maintaining oral health. Therefore, this study aimed to evaluate the prevention effects of Lactobacillus plantarum Ln4 against dental infection by the pathogenic bacterium Streptococcus mutans KCTC 5124 through biofilm formation inhibition. To evaluate such prevention effects against S. mutans KCTC 5124, antimicrobial activity, auto-aggregation, co-aggregation, cell surface hydrophobicity, total exopolysaccharide (EPS) production rate, and biofilm formation were analyzed. Results showed that L. plantarum Ln4 showed higher antimicrobial activity than L. rhamnosus GG (LGG). In the group treated with L. plantarum Ln4, the co-aggregation (58.85%), cell surface hydrophobicity (16.75%), and EPS production rate (73.29%) values were lower than those of LGG and the negative control. Additionally, crystal violet staining and confocal laser scanning microscopy (CLSM) revealed that L. plantarum Ln4 effectively inhibited biofilm formation in S. mutans KCTC 5124. Therefore, L. plantarum Ln4 could be used in the industry as a probiotics to prevent and improve oral health.
Collapse
Affiliation(s)
- Hye Ji Jang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Ha Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Guo M, Wu J, Hung W, Sun Z, Zhao W, Lan H, Zhao Z, Wuri G, Fang B, Zhao L, Zhang M. Lactobacillus paracasei ET-22 Suppresses Dental Caries by Regulating Microbiota of Dental Plaques and Inhibiting Biofilm Formation. Nutrients 2023; 15:3316. [PMID: 37571254 PMCID: PMC10421449 DOI: 10.3390/nu15153316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Dental caries is a common and multifactorial biofilm disease that is associated with dietary habits and microbiota. Among the various pathogens inducing caries, S. mutans is the most extensively studied. Promoting oral health with probiotics has gained considerable attention. Lactobacillus paracasei (L. paracasei) strains were reported to modulate the gut microbiota and enhance host resistance to disease. Our previous research has found that L. paracasei ET-22 (ET-22) could inhibit S. mutans biofilms in vitro. However, the preventive effect in vivo and functional mechanism of ET-22 on dental caries were unclear. In this study, the preventive effects of ET-22 on dental caries in mice were checked. Meanwhile, the functional mechanism of ET-22 was further investigated. Results showed that the supplementation of ET-22 in drinking water significantly improved the caries scoring of mice. The microbiota of dental plaques revealed that the live and heat-killed ET-22 similarly regulated the microbial structure in plaque biofilms. Functional prediction of PICRUSt showed that the addition of live and heat-killed ET-22 may inhibit biofilm formation. By the in vitro trials, the live and heat-killed ET-22 indeed inhibited the construction of S. mutans biofilms and EPS productions of biofilms. This evidence suggests that ET-22 can restrain dental caries by regulating the microbiota of dental plaques and inhibiting biofilm formation, which may be partly mediated by the body components of ET-22.
Collapse
Affiliation(s)
- Meng Guo
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China; (M.G.)
| | - Jianmin Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Weilian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Zhe Sun
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China; (M.G.)
| | - Wen Zhao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Hanglian Lan
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Zhi Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Guna Wuri
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China; (M.G.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China; (M.G.)
| |
Collapse
|
6
|
Venugopal M, Khosla E, K KA, Alex V, T N, Kumar H. Evaluation of Probiotic Effects of Lactobacilli on Mutans Streptococci: An In Vitro Study. J Contemp Dent Pract 2023; 23:984-990. [PMID: 37073910 DOI: 10.5005/jp-journals-10024-3414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
AIM The aim of the present study is to evaluate the probiotic effect of Lactobacillus acidophilus and Lactobacillus rhamnosus on clinical isolates of Mutans Streptococci (MS) and antibiotic susceptibility of these strains to commonly used antibiotics in dentistry. MATERIALS AND METHODS Plaque samples from permanent first molars were collected and transferred aseptically onto Mitis-Salivarius agar and incubated at 37°C for 24 hours in the presence of 5-10% CO2. Mutans streptococci colonies were identified biochemically using Hi-Strep identification kit. The inhibitory activity of the clinical strains of MS on Lactobacilli was investigated using agar-overlay interference technique. Positive inhibition was appreciated as a clear zone around the Lactobacilli. Disk diffusion assay was done as described by CLSI M100-S25 for antibiotic susceptibility. The zone of growth inhibition caused by Lactobacilli and antibiotics on MS clinical strains was measured directly using a vernier caliper. Statistical analysis was done using independent t-test. RESULTS Mutans streptococci exhibited positive inhibition with both the probiotic strains and L. acidophilus showed more zones of inhibition than L. rhamnosus. Antibiotic susceptibility of clinical strains of MS showed sensitivity to penicillin and vancomycin, however, tetracycline and erythromycin showed very few resistant strains. The highest zone of inhibition was shown by cephalothin followed by penicillin, tetracycline, ciprofloxacin, erythromycin, and vancomycin. CONCLUSION L. rhamnosus and L. acidophilus have strong inhibitory effects on clinical strains of MS. Lactobacillus acidophilus showed a higher zone of inhibition. All the clinical strains of MS were sensitive to penicillin and vancomycin. The highest zone of inhibition was shown by cephalothin. CLINICAL SIGNIFICANCE Dental caries remains silent epidemic and increasing antibiotic resistance is another major challenge that threatens the world. Newer methods such as whole-bacteria replacement therapy using probiotics for decreasing harmful oral pathogens and reducing the intake of antibiotics must be explored. More researches to promote use of probiotics should be initiated due to its possible preventive and health maintenance benefits providing an end to new cavities and antibiotic resistance.
Collapse
Affiliation(s)
- Malini Venugopal
- Amrita Vishwa Vidhyapeetham, Amrita School of Dentistry, Ernakulam, Kerala, India, Phone: +91 7559064198, e-mail: , Orcid: https://orcid.org/0000-0002-2485-1809
| | - Ektah Khosla
- Department of Pedodontics and Preventive Dentistry, Mar Baselios Dental College, Kerala, India
| | - Korath Abraham K
- Department of Pedodontics and Preventive Dentistry, Mar Baselios Dental College, Kerala, India
| | - Vinitha Alex
- Department of Pediatric and Preventive Dentistry, Ernakulam, Kerala, India
| | - Nishna T
- Department of Pediatric and Preventive Dentistry, Amrita School of Dentistry, Ernakulam, Kerala, India, Orcid: https://orcid.org/0000-0003-1264-501X
| | - Harish Kumar
- Department of Medical Microbiology, School of Medical Education, Centre for Professional and Advanced Studies, Kottayam, Kerala, India, Orcid: https://orcid.org/0000-0002-0504-7794
| |
Collapse
|
7
|
Gu M, Cho JH, Suh JW, Cheng J. Potential oral probiotic Lactobacillus pentosus MJM60383 inhibits Streptococcus mutans biofilm formation by inhibiting sucrose decomposition. J Oral Microbiol 2022; 15:2161179. [PMID: 36605406 PMCID: PMC9809368 DOI: 10.1080/20002297.2022.2161179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
Streptococcus mutans is known as a contributor to dental caries. In this work, Lactobacillus pentosus MJM60383 was selected for its strong antagonistic activity against S. mutans and was characterized by good oral probiotic properties including lysozyme tolerance, adhesive ability to oral cells, good aggregation (auto-aggregation, co-aggregation) ability, hydrogen peroxide production and inhibition of biofilm formation of S. mutans. L. pentosus MJM60383 also exhibited safety as a probiotic characterized by no hemolytic activity, no D-lactate production, no biogenic amine production, and susceptibility to antibiotics. Furthermore, the biofilm formation of S. mutans was also significantly inhibited by the supernatant of L. pentosus MJM60383. An anti-biofilm mechanism study revealed that sucrose decomposition and the production of water-insoluble exopolysaccharides by S. mutans were inhibited by the treatment with L. pentosus MJM60383 supernatant. Real-time PCR analysis indicated that the supernatant of L. pentosus MJM60383 significantly inhibited the mRNA expression of S. mutans glycosyltransferases, which synthesize glucan to construct biofilm architecture and mediate bacterial adherence. Our study demonstrated L. pentosus MJM60383 as a potential oral probiotic and revealed its anti-biofilm mechanism.
Collapse
Affiliation(s)
- Mingkun Gu
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Republic of Korea
| | - Joo-Hyung Cho
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Joo-Won Suh
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| | - Jinhua Cheng
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Republic of Korea
| |
Collapse
|
8
|
Gu Q, Yin Y, Yan X, Liu X, Liu F, McClements DJ. Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: A review. Adv Colloid Interface Sci 2022; 309:102781. [DOI: 10.1016/j.cis.2022.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
|
9
|
Weng L, Wu L, Guo R, Ye J, Liang W, Wu W, Chen L, Yang D. Lactobacillus cell envelope-coated nanoparticles for antibiotic delivery against cariogenic biofilm and dental caries. J Nanobiotechnology 2022; 20:356. [PMID: 35918726 PMCID: PMC9344742 DOI: 10.1186/s12951-022-01563-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/20/2022] [Indexed: 12/31/2022] Open
Abstract
Background Due to their prevalence, dental caries ranks first among all diseases endangering human health. Therefore, the prevention of caries is of great significance, as caries have become a serious public health problem worldwide. Currently, using nanoscale drug delivery systems to prevent caries has received increased attention. However, the preventive efficacy of these systems is substantially limited due to the unique physiological structure of cariogenic biofilms. Thus, novel strategies aimed at combating cariogenic biofilms to improve preventive efficiency against caries are meaningful and very necessary. Herein, inspired by cell membrane coating technology and Lactobacillus strains, we coated triclosan (TCS)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TCS@PLGA-NPs) with an envelope of Lactobacillus (LA/TCS@PLGA-NPs) and investigated their potential as a nanoparticle delivery system against cariogenic biofilms and dental caries. Results LA/TCS@PLGA-NPs were successfully prepared with favorable properties, including a coated envelope, controllable size, negative charge, sustained drug-release kinetics and so on. The LA/TCS@PLGA-NPs inherited native properties from the source cell surface, thus the LA/TCS@PLGA-NPs adhered to S. mutans, integrated into the S. mutans biofilm, and interfered with the biofilm formation of S. mutans. The nanoparticles significantly inhibited the activity, biomass and virulence gene expression of S. mutans biofilms in vitro. Additionally, LA/TCS@PLGA-NPs exhibited a long-lasting inhibitory effect on the progression of caries in vivo. The safety performance of the nanoparticles is also favorable. Conclusions Our findings reveal that the antibiofilm effect of LA/TCS@PLGA-NPs relies not only on the inheritance of native properties from the Lactobacillus cell surface but also on the inhibitory effect on the activity, biomass and virulence of S. mutans biofilms. Thus, these nanoparticles could be considered feasible candidates for a new class of effective drug delivery systems for the prevention of caries. Furthermore, this work provides new insights into cell membrane coating technology and presents a novel strategy to combat bacterial biofilms and associated infections. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01563-x.
Collapse
Affiliation(s)
- Luting Weng
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshi North Road, Yubei District, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
| | - Lang Wu
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshi North Road, Yubei District, Chongqing, 401147, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China
| | - Rongjuan Guo
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshi North Road, Yubei District, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Jiajia Ye
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshi North Road, Yubei District, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Wen Liang
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshi North Road, Yubei District, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Wei Wu
- Bioengineering College of Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing, 400044, China.
| | - Liang Chen
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshi North Road, Yubei District, Chongqing, 401147, China.
| | - Deqin Yang
- Stomatological Hospital of Chongqing Medical University, No. 426, Songshi North Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
10
|
Donadio G, Chini MG, Parisi V, Mensitieri F, Malafronte N, Bifulco G, Bisio A, De Tommasi N, Bader A. Diterpenoid Constituents of Psiadia punctulata and Evaluation of Their Antimicrobial Activity. JOURNAL OF NATURAL PRODUCTS 2022; 85:1667-1680. [PMID: 35748331 PMCID: PMC9315948 DOI: 10.1021/acs.jnatprod.1c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sixteen diterpenes (1-16), along with 10 previously described compounds, including four flavonoids and six diterpenes, were isolated from the aerial parts of Psiadia punctulata growing in Saudi Arabia. The diterpene structures were elucidated using NMR spectroscopy and mass spectrometry data. Furthermore, a DFT/NMR procedure was used to suggest the relative configuration of several compounds. The labdane-derived skeletons, namely, ent-atisane, ent-beyerene, ent-trachylobane, and ent-kaurene, were identified. The extracts, fractions, and pure compounds were then tested against Staphylococcus aureus, Streptococcus mutans, Treponema denticola, and Lactobacillus plantarum. One diterpenoid, namely, psiadin, showed an additive effect with the antiseptic chlorhexidine, with a fractional inhibitory concentration index of less than 1. Additionally, psiadin showed a prospective inhibition activity for bacterial efflux pumps.
Collapse
Affiliation(s)
- Giuliana Donadio
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Maria Giovanna Chini
- Department
of Biosciences and Territory, University
of Molise, Contrada Fonte Lappone, I-86090, Pesche, Isernia, Italy
| | - Valentina Parisi
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
- Ph.D.
Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Francesca Mensitieri
- Department
of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, 84081, Baronissi, Italy
| | - Nicola Malafronte
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Giuseppe Bifulco
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Angela Bisio
- Department
of Pharmacy, University of Genova, Viale Cembrano 4, 16148, Genova, Italy
| | - Nunziatina De Tommasi
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Ammar Bader
- Department
of Pharmacognosy, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| |
Collapse
|
11
|
Lin Y, Gong T, Ma Q, Jing M, Zheng T, Yan J, Chen J, Pan Y, Sun Q, Zhou X, Li Y. Nicotinamide could reduce growth and cariogenic virulence of Streptococcus mutans. J Oral Microbiol 2022; 14:2056291. [PMID: 35341208 PMCID: PMC8956312 DOI: 10.1080/20002297.2022.2056291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dental caries is among the most prevalent chronic oral infectious diseases. Streptococcus mutans, a major cariogenic bacterial species, possesses several cariogenicity-associated characteristics, including exopolysaccharides (EPS) synthesis, biofilm formation, acidogenicity, and aciduricity. Nicotinamide (NAM), a form of vitamin B3, is a non-toxic, orally available, and inexpensive compound. The present study investigated the inhibitory effects of NAM on the cariogenic virulence factors of S. mutans in vitro and in vivo. NAM inhibited the growth of S. mutans UA159 and the clinical isolates. In addition, there was a decrease in the acid production and acid tolerance ability, as well as biofilm formation and EPS production of S. mutans after NAM treatment. Global gene expression profiling showed that 128 and 58 genes were significantly downregulated and upregulated, respectively, in NAM-treated S. mutans strains. The differentially expressed genes were mainly associated with carbohydrate transport and metabolism, glycolysis, acid tolerance. Moreover, in a rat caries model, NAM significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo. NAM exhibited good antimicrobial properties against S. mutans, indicating its potential value for antibiofilm and anti-caries applications.
Collapse
Affiliation(s)
- Yongwang Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Meiling Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ting Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiamin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yangyang Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qun Sun
- Key Laboratory of Bio-resources & Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Kuo YW, Hsieh SH, Chen JF, Liu CR, Chen CW, Huang YF, Ho HH. Lactobacillus reuteri TSR332 and Lactobacillus fermentum TSF331 stabilize serum uric acid levels and prevent hyperuricemia in rats. PeerJ 2021; 9:e11209. [PMID: 33986988 PMCID: PMC8101448 DOI: 10.7717/peerj.11209] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/13/2021] [Indexed: 01/13/2023] Open
Abstract
Background Uric acid (UA) is the end product of purine metabolism in the liver and is excreted by the kidneys. When purine metabolism is impaired, the serum UA level will be elevated (hyperuricemia) and eventually lead to gout. During evolution, humans and some primates have lost the gene encoding uricase, which is vital in UA metabolism. With the advances of human society, the prevalence of hyperuricemia has dramatically increased because of the refined food culture. Hyperuricemia can be controlled by drugs, such as allopurinol and probenecid. However, these drugs have no preventive effect and are associated with unpleasant side effects. An increasing number of probiotic strains, which are able to regulate host metabolism and prevent chronic diseases without harmful side effects, have been characterized. The identification of probiotic strains, which are able to exert beneficial effects on UA metabolism, will provide an alternative healthcare strategy for patients with hyperuricemia, especially for those who are allergic to anti-hyperuricemia drugs. Methods To elicit hyperuricemia, rats in the symptom control group (HP) were injected with potassium oxonate and fed a high-purine diet. Rats in the probiotic groups received the high-purine diet, oxonate injection, and supplements of probiotic strains TSR332, TSF331, or La322. Rats in the blank control group (C) received a standard diet (AIN-93G) and oxonate injection. Results Purine-utilizing strains of probiotics were screened using high-pressure liquid chromatography (HPLC) in vitro, and the lowering effect on serum UA levels was analyzed in hyperuricemia rats in vivo. We found that Lactobacillus reuteri strain TSR332 and Lactobacillus fermentum strain TSF331 displayed significantly strong assimilation of inosine (90%; p = 0.00003 and 59%; p = 0.00545, respectively) and guanosine (78%; p = 0.00012 and 51%; p = 0.00062, respectively) within 30 min in vitro. Further animal studies revealed that serum UA levels were significantly reduced by 60% (p = 0.00169) and 30% (p = 0.00912), respectively, in hyperuricemic rats treated with TSR332 and TSF331 for 8 days. Remarkably, TSR332 ameliorated the occurrence of hyperuricemia, and no evident side effects were observed. Overall, our study indicates that TSR332 and TSF331 are potential functional probiotic strains for controlling the development of hyperuricemia.
Collapse
Affiliation(s)
- Yi-Wei Kuo
- Research and Development Department, Glac Biotech Co., Ltd., Tainan, Taiwan
| | - Shih-Hung Hsieh
- Research and Development Department, Glac Biotech Co., Ltd., Tainan, Taiwan
| | - Jui-Fen Chen
- Research and Development Department, Glac Biotech Co., Ltd., Tainan, Taiwan
| | - Cheng-Ruei Liu
- Research and Development Department, Glac Biotech Co., Ltd., Tainan, Taiwan
| | - Ching-Wei Chen
- Research and Development Department, Glac Biotech Co., Ltd., Tainan, Taiwan
| | - Yu-Fen Huang
- Research and Development Department, Glac Biotech Co., Ltd., Tainan, Taiwan
| | - Hsieh-Hsun Ho
- Research and Development Department, Glac Biotech Co., Ltd., Tainan, Taiwan
| |
Collapse
|
13
|
Chen X, Daliri EBM, Kim N, Kim JR, Yoo D, Oh DH. Microbial Etiology and Prevention of Dental Caries: Exploiting Natural Products to Inhibit Cariogenic Biofilms. Pathogens 2020; 9:E569. [PMID: 32674310 PMCID: PMC7400585 DOI: 10.3390/pathogens9070569] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Dental caries is one of the most common microbe-mediated oral diseases in human beings. At present, the accepted etiology of caries is based on a four-factor theory that includes oral microorganisms, oral environment, host, and time. Excessive exposure to dietary carbohydrates leads to the accumulation of acid-producing and acid-resistant microorganisms in the mouth. Dental caries is driven by dysbiosis of the dental biofilm adherent to the enamel surface. Effective preventive methods include inhibiting the cariogenic microorganisms, treatment with an anti-biofilm agent, and sugar intake control. The goal is to reduce the total amount of biofilm or the levels of specific pathogens. Natural products could be recommended for preventing dental caries, since they may possess fewer side effects in comparison with synthetic antimicrobials. Herein, the mechanisms of oral microbial community development and functional specialization are discussed. We highlight the application of widely explored natural products in the last five years for their ability to inhibit cariogenic microorganisms.
Collapse
Affiliation(s)
- Xiuqin Chen
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (N.K.)
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (N.K.)
| | - Namhyeon Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (N.K.)
| | - Jong-Rae Kim
- Hanmi Natural Nutrition Co., LTD 44-20, Tongil-ro 1888 beon-gil, Munsan, Paju, Gyeonggi 10808, Korea;
| | - Daesang Yoo
- H-FOOD, 108-66, 390 gil, Jingun Oh Nam-Ro, Nam Yang, Ju-Shi, Gyung Gi-Do 12041, Korea;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (N.K.)
| |
Collapse
|