1
|
Kim KJ, Yun SG, Nam MH, Lee CK, Cho Y. Comparing sputum, nasopharyngeal swabs, and combined samples for respiratory bacterial detection using multiplex PCR. Microbiol Spectr 2025:e0228524. [PMID: 39882879 DOI: 10.1128/spectrum.02285-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Respiratory tract infections are major global health issues that require rapid and accurate diagnostic methods. Multiplex quantitative PCR (qPCR) is commonly used for pathogen detection in respiratory samples. However, the optimal specimen selection for detecting bacterial pathogens is not well-explored. We evaluated the detection rates of respiratory bacteria from nasopharyngeal swabs (NPS), sputum, and combined NPS and sputum samples using multiplex qPCR (Allplex PneumoBacter Assay, Seegene). Paired NPS and sputum samples from 219 patients with acute respiratory symptoms admitted to Korea University Anam Hospital were analyzed. qPCR was performed to detect seven respiratory bacteria: Bordetella parapertussis, Bordetella pertussis, Chlamydophila pneumoniae, Haemophilus influenzae, Legionella pneumophila, Mycoplasma pneumoniae, and Streptococcus pneumoniae. Combined NPS and sputum samples (n = 92) were created from 46 pairs of positive and 46 pairs of negative signals for NPS-alone and sputum-alone samples. Sputum samples (44.3%; 97/219) had a significantly higher positivity rate compared to NPS samples (21.0%; 46/219) (P < 0.001). The 92 combined samples identified a total of 65 bacterial nucleic acids. The detection rate for the combined samples was 86.2% (56/65), which was comparable to that of sputum alone (89.2%; 58/65) and higher than that of NPS samples (50.8%; 33/65). Combining NPS and sputum samples for PCR testing may offer an alternative for bacterial pathogen detection, providing rates comparable to those of sputum alone and greater sensitivity than that of NPS alone. This combined approach could be a cost-effective method to maximize diagnostic yield, reduce the need for multiple tests, and improve the management of respiratory infections. IMPORTANCE This study offers important insights into refining diagnostic strategies for respiratory bacterial infections using multiplex PCR. This study finds that combining sputum and nasopharyngeal swabs into a single tube could serve as an effective alternative for detecting respiratory bacteria in adults with acute respiratory illness.
Collapse
Affiliation(s)
- Keun Ju Kim
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Seung Gyu Yun
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Myung-Hyun Nam
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Chang Kyu Lee
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Yunjung Cho
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Rajalingam N, Choi SY, Van Haute S. Ultra violet-C pretreatment enhances the antimicrobial efficacy of unpeeled carrots against subsequent contamination with Listeria monocytogenes. Int J Food Microbiol 2024; 421:110800. [PMID: 38878705 DOI: 10.1016/j.ijfoodmicro.2024.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
To our knowledge, this study is the first to elucidate the bactericidal efficacy of unpeeled carrots (hereafter referred to as carrots) pretreated with Ultra Violet-C (UV-C) against subsequent contamination with Listeria monocytogenes. Carrots pretreated with UV-C (240 mJ/cm2) exhibited a significant antilisterial effect within 2 h. In fact, the population of UV-C-pretreated carrots decreased from 7.94 log CFU/cm2 to levels below the limit of detection (LOD; <1.65 log CFU/cm2) within 24 h. For carrots that were not pretreated with UV-C, 3-4 log reductions were found after 24 h. Carrots pretreated with UV-C exhibited antimicrobial activity against another gram-positive pathogen, Staphylococcus aureus, but not against the gram-negative pathogens, E. coli O157:H7 and Salmonella enterica. Pretreatment with UV-C created a lasting antimicrobial effect as introducing L. monocytogenes on carrots, 72 h post-UV-C treatment, still maintained the antilisterial effect. Notably, all UV-C doses in the range of 48-240 mJ/cm2 induced a lasting antilisterial effect. The bactericidal effects against L. monocytogenes were confirmed in three varieties of washed and unwashed carrots (Danvers, Nantes, and Chantenay). Fluorescence microscopy confirmed the bactericidal effect of UV-C-pretreated carrots on the survival of L. monocytogenes. Conclusively, pretreating carrots with UV-C can reduce the population of L. monocytogenes to levels below the LOD and may further prevent pathogen growth during cold storage. Additional studies are necessary to discern the mechanism underlying the bactericidal efficacy of UV-C-pretreated carrots.
Collapse
Affiliation(s)
- Nagendran Rajalingam
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Food Biotechnology and Microbiology, Ghent University Global Campus, Incheon 21985, Republic of Korea; Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Song-Yi Choi
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
| | - Sam Van Haute
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Food Biotechnology and Microbiology, Ghent University Global Campus, Incheon 21985, Republic of Korea.
| |
Collapse
|
3
|
İzgördü ÖK, Gurbanov R, Darcan C. Understanding the transition to viable but non-culturable state in Escherichia coli W3110: a comprehensive analysis of potential spectrochemical biomarkers. World J Microbiol Biotechnol 2024; 40:203. [PMID: 38753033 PMCID: PMC11098925 DOI: 10.1007/s11274-024-04019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
The viable but non-culturable (VBNC) state is considered a survival strategy employed by bacteria to endure stressful conditions, allowing them to stay alive. Bacteria in this state remain unnoticed in live cell counts as they cannot proliferate in standard culture media. VBNC cells pose a significant health risk because they retain their virulence and can revive when conditions normalize. Hence, it is crucial to develop fast, reliable, and cost-effective methods to detect bacteria in the VBNC state, particularly in the context of public health, food safety, and microbial control assessments. This research examined the biomolecular changes in Escherichia coli W3110 induced into the VBNC state in artificial seawater under three different stress conditions (temperature, metal, and antibiotic). Initially, confirmation of VBNC cells under various stresses was done using fluorescence microscopy and plate counts. Subsequently, lipid peroxidation was assessed through the TBARS assay, revealing a notable increase in peroxidation end-products in VBNC cells compared to controls. ATR-FTIR spectroscopy and chemomometrics were employed to analyze biomolecular changes, uncovering significant spectral differences in RNA, protein, and nucleic acid concentrations in VBNC cells compared to controls. Notably, RNA levels increased, while protein and nucleic acid amounts decreased. ROC analyses identified the 995 cm- 1 RNA band as a consistent marker across all studied stress conditions, suggesting its potential as a robust biomarker for detecting cells induced into the VBNC state under various stressors.
Collapse
Affiliation(s)
- Özge Kaygusuz İzgördü
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, Bilecik, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduate Education, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey.
- Central Research Laboratory, Bilecik Şeyh Edebali University, Bilecik, Turkey.
| | - Cihan Darcan
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
4
|
Shi Y, Wen T, Zhao F, Hu J. Bacteriostasis of nisin against planktonic and biofilm bacteria: Its mechanism and application. J Food Sci 2024; 89:1894-1916. [PMID: 38477236 DOI: 10.1111/1750-3841.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Food safety incidents caused by bacterial contamination have always been one of the public safety issues of social concern. Planktonic cells, viable but non-culturable (VBNC) cells, and biofilm cells of bacteria can coexist in food or food processing, posing more serious challenges to public health and safety by increasing bacterial survival and difficulty in detection. As a non-toxic, no side effect, and highly effective bacteriostatic substance, nisin has received wide attention from researchers. In this review, we summarized the species and biosynthesis of nisin, the effects of nisin alone or in combination with other treatments on planktonic and biofilm cells, and its applications in the fields of food, feed, and medicine by consulting numerous studies. Meanwhile, the mechanism of nisin on planktonic and biofilm cells was proposed based on existing researches. Nisin not only has antibacterial activity against most G+ bacteria but also exhibits a bacteriostatic effect on G- bacteria when combined with other antibacterial treatments. In addition to planktonic cells, nisin also has significant effects on bacterial cells in biofilms by changing the thickness, density, and composition of biofilms. Based on the three action processes of nisin on biofilms, we summarized the changes of bacteria in biofilms, including the causes of bacterial death and the formation of the VBNC state. We consider that research on the relationship between nisin and VBNC state should be strengthened.
Collapse
Affiliation(s)
- Ying Shi
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Tao Wen
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Feng Zhao
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| | - Jia Hu
- College of Food Science and Engineering, Jilin University, Changchun, P. R. China
| |
Collapse
|
5
|
Wang Y, Chen Z, Zhao F, Yang H. Metabolome shifts triggered by chlorine sanitisation induce Escherichia coli on fresh produce into the viable but nonculturable state. Food Res Int 2023; 171:113084. [PMID: 37330837 DOI: 10.1016/j.foodres.2023.113084] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Facing the increasing occurrence of "big six" Escherichia coli outbreaks linked to fresh produce, chlorine-based sanitisers are widely used for fresh produce decontamination in recent years. However, latest finding that chlorine may induce E. coli cells into a viable not nonculturable (VBNC) state is bringing a new challenge to the fresh produce industry. VBNC cells are undetectable by the plate count test, and yet they retain pathogenicity and are more antibiotic-resistant than culturable cells. As a result, their eradication is critical to ensure the safety of fresh produce. Understanding VBNC cells at the metabolic level may provide a breakthrough for their eradication. Therefore, this study was carried out to collect the VBNC pathogenic E. coli (O26:H11, O121:H19, and O157:H7) cells from chlorine-treated pea sprouts and characterise them using NMR-based metabolomics. From the globally increased metabolite contents detected in the VBNC E. coli cells as compared to the culturable cells, mechanisms underlying E. coli's VBNC induction were elucidated. These include rendering the energy generation scheme to become more compatible with the lowered energy needs, disaggregating protein aggregates to release amino acids for osmoprotection and later resuscitation, as well as increasing cAMP content to downregulate RpoS. These identified metabolic characteristics can inspire future development of targeted measures for VBNC E. coli cell inhibition. Our methods can also be applied to other pathogens to help lower the risk of overall foodborne diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore.
| | - Zihui Chen
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Fengnian Zhao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Hongshun Yang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Zhejiang, 312000, China.
| |
Collapse
|
6
|
İzgördü ÖK, Darcan C, Kariptaş E. Overview of VBNC, a survival strategy for microorganisms. 3 Biotech 2022; 12:307. [PMID: 36276476 PMCID: PMC9526772 DOI: 10.1007/s13205-022-03371-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022] Open
Abstract
Microorganisms are exposed to a wide variety of stress factors in their natural environments. Under that stressful conditions, they move into a viable but nonculturable (VBNC) state to survive and maintain the vitality. At VBNC state, microorganisms cannot be detected by traditional laboratory methods, but they can be revived under appropriate conditions. Therefore, VBNC organisms cause serious food safety and public health problems. To date, it has been determined that more than 100 microorganism species have entered the VBNC state through many chemical and physical factors. During the last four decades, dating from the initial detection of the VBNC condition, new approaches have been developed for the induction, detection, molecular mechanisms, and resuscitation of VBNC cells. This review evaluates the current data of recent years on the inducing conditions and detection methods of the VBNC state, including with microorganisms on the VBNC state, their virulence, pathogenicity, and molecular mechanisms.
Collapse
Affiliation(s)
- Özge Kaygusuz İzgördü
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Cihan Darcan
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Ergin Kariptaş
- Department of Microbiology, Faculty of Medicine, Samsun University, Samsun, Turkey
| |
Collapse
|
7
|
Lund Håheim L, Thelle DS, Rønningen KS, Olsen I, Schwarze PE. Low level of antibodies to the oral bacterium Tannerella forsythia predicts bladder cancers and Treponema denticola predicts colon and bladder cancers: A prospective cohort study. PLoS One 2022; 17:e0272148. [PMID: 35994451 PMCID: PMC9394794 DOI: 10.1371/journal.pone.0272148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
This study explores the risk for cancer by level of antibodies to the anaerobe oral bacteria of periodontitis Tannerella forsythia (TF), Porphyromonas gingivalis (PG), and Treponema denticola (TD) all three collectively termed the red complex, and the facultative anaerobe bacterium Aggregatibacter actinomycetemcomitans (AA). The prospective cohort, the Oslo II-study from 2000, the second screening of the Oslo study of 1972/73, has been followed for 17 ½ years with regard to cancer incidence and mortality. A random sample of 697 elderly men comprised the study cohort. The antibody results measured by enzyme linked immunosorbent assay (ELISA) were used in the Cox proportional hazards analyses, and quartile risk on cancer incidence in a 17 ½ years follow-up. Among the 621 participants with no prior cancer diagnoses, 221 men developed cancer. The incidence trend was inverse, and the results are shown as 1st quartile of highest value and 4th as lowest of antibody levels. The results of the Cox proportional regression analyses showed that TF inversely predicts bladder cancer (n = 22) by Hazard Ratio (HR) = 1.71 (95% CI: 1.12, 2.61). TD inversely predicts colon cancer (n = 26) by HR = 1.52 (95% CI: 1.06, 2.19) and bladder cancer (n = 22) by HR = 1.60 (95% CI: 1.05, 2.43). Antibodies to two oral bacteria, TF and TD, showed an inverse risk relationship with incidence of specific cancers: TF bladder cancer, TD bladder and colon cancer. Lowered immunological response to the oral infection, periodontitis, is shown to be a risk factor in terms of cancer aetiology.
Collapse
Affiliation(s)
- Lise Lund Håheim
- Department of Oral Biology, University of Oslo, Oslo, Norway
- * E-mail:
| | - Dag S. Thelle
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Community Medicine and Public Health, University of Gothenburg, Gothenburg, Sweden
| | | | - Ingar Olsen
- Department of Oral Biology, University of Oslo, Oslo, Norway
| | | |
Collapse
|