1
|
Heidari S, Hajjaran H, Mohebali M, Akhoundi B, Gharechahi J. Recognition of Immunoreactive Proteins in Leishmania infantum Amastigote-Like and Promastigote Using Sera of Visceral Leishmaniasis Patients: a Preliminary Study. Acta Parasitol 2024; 69:533-540. [PMID: 38227109 DOI: 10.1007/s11686-023-00764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE Visceral leishmaniasis (VL) is a systemic and parasitic disease that is usually fatal if left untreated. VL is endemic in different parts of Iran and is caused mainly by Leishmania infantum. This study aimed to recognition immunoreactive proteins in amastigote-like and promastigote stages of L. infantum (Iranian strain) by antibodies present in the sera of VL patients. METHODS Total protein extract from amastigote-like and promastigote cells was separated by two-dimensional electrophoresis (2DE). To detect the immunoreactive proteins, 2DE immunoblotting method was performed using different pools of VL patients' sera. RESULTS Approximately 390 and 430 protein spots could be separated in 2DE profiles of L. infantum amastigote-like and promastigote stages, respectively. In immunoblotting method, approximately 295 and 135 immunoreactive proteins of amastigotes-like reacted with high antibody titer serum pool and low antibody titer serum pool, respectively. Approximately 120 and 85 immunoreactive proteins of promastigote extract were recognized using the high antibody titer sera pool and low antibody titer sera, respectively. CONCLUSION The present study has recognized a number of antigenic diversity proteins based on the molecular weight and pH in amastigote-like and promastigote stages of L. infantum. These results provide us a new concept for further analysis development in the field of diagnosis biomarkers and vaccine targets.
Collapse
Affiliation(s)
- Soudabeh Heidari
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran.
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Akhoundi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Muro A, Nguewa P, Manzano-Román R. The Defensive Interactions of Prominent Infectious Protozoan Parasites: The Host's Complement System. Biomolecules 2022; 12:1564. [PMID: 36358913 PMCID: PMC9687244 DOI: 10.3390/biom12111564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 12/30/2023] Open
Abstract
The complement system exerts crucial functions both in innate immune responses and adaptive humoral immunity. This pivotal system plays a major role dealing with pathogen invasions including protozoan parasites. Different pathogens including parasites have developed sophisticated strategies to defend themselves against complement killing. Some of these strategies include the employment, mimicking or inhibition of host's complement regulatory proteins, leading to complement evasion. Therefore, parasites are proven to use the manipulation of the complement system to assist them during infection and persistence. Herein, we attempt to study the interaction´s mechanisms of some prominent infectious protozoan parasites including Plasmodium, Toxoplasma, Trypanosoma, and Leishmania dealing with the complement system. Moreover, several crucial proteins that are expressed, recruited or hijacked by parasites and are involved in the modulation of the host´s complement system are selected and their role for efficient complement killing or lysis evasion is discussed. In addition, parasite's complement regulatory proteins appear as plausible therapeutic and vaccine targets in protozoan parasitic infections. Accordingly, we also suggest some perspectives and insights useful in guiding future investigations.
Collapse
Affiliation(s)
- Sajad Rashidi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein 38811, Iran
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein 38811, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915173143, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft 7861615765, Iran
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Paul Nguewa
- Department of Microbiology and Parasitology, ISTUN Institute of Tropical Health, IdiSNA (Navarra Institute for Health Research), University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
3
|
Mining the Proteome of Toxoplasma Parasites Seeking Vaccine and Diagnostic Candidates. Animals (Basel) 2022; 12:ani12091098. [PMID: 35565525 PMCID: PMC9099775 DOI: 10.3390/ani12091098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The One Health concept to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. Toxoplasmosis outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. Consequently, the development of effective vaccine and diagnostic strategies is urgent for the elimination of this disease. Proteomics analysis has allowed the identification of key proteins that can be utilized in the development of novel disease diagnostics and vaccines. This work presents relevant proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites. In fact, it brings together the main functionality key proteins from Toxoplasma parasites coming from proteomic approaches that are most likely to be useful in improving the disease management, and critically proposes innovative directions to finally develop promising vaccines and diagnostics tools. Abstract Toxoplasma gondii is a pathogenic protozoan parasite that infects the nucleated cells of warm-blooded hosts leading to an infectious zoonotic disease known as toxoplasmosis. The infection outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. The One Health approach to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. The presence of drug resistance and side effects, the further improvement of sensitivity and specificity of serodiagnostic tools and the potentiality of vaccine candidates to induce the host immune response are considered as justifiable reasons for the identification of novel targets for the better management of toxoplasmosis. Thus, the identification of new critical proteins in the proteome of Toxoplasma parasites can also be helpful in designing and test more effective drugs, vaccines, and diagnostic tools. Accordingly, in this study we present important proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites that are potential diagnostic or vaccine candidates. The current study might help to understand the complexity of these parasites and provide a possible source of strategies and biomolecules that can be further evaluated in the pathobiology of Toxoplasma parasites and for diagnostics and vaccine trials against this disease.
Collapse
|
4
|
Kalantar K, Manzano-Román R, Ghani E, Mansouri R, Hatam G, Nguewa P, Rashidi S. Leishmanial apolipoprotein A-I expression: a possible strategy used by the parasite to evade the host's immune response. Future Microbiol 2021; 16:607-613. [PMID: 33998267 DOI: 10.2217/fmb-2020-0303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apolipoprotein A-I (apo A-I) represents the main component of the Trypanosome lytic factor (TLF) which contributes to the host innate immunity against Trypanosoma and Leishmania. These parasites use complex and multiple strategies such as molecular mimicry to evade or subvert the host immune system. Previous studies have highlighted the adaptation mechanisms of TLF-resistant Trypanosoma species. These data might support the hypothesis that Leishmania parasites (amastigote forms in macrophages) might express apo A-I to bypass and escape from TLF action as a component of the host innate immune responses. The anti-inflammatory property of apo A-I is another mechanism that supports our idea that apo A-I may play a role in Leishmania parasites allowing them to bypass the host innate immune system.
Collapse
Affiliation(s)
- Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, 37007, Spain
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- Department of Microbiology & Parasitology, University of Navarra, ISTUN Instituto de Salud Tropical, IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea 1, Pamplona, 31008, Spain
| | - Sajad Rashidi
- Department of Parasitology & Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Abstract
The association of leishmaniasis and malignancies in human and animal models has been highlighted in recent years. The misdiagnosis of coexistence of leishmaniasis and cancer and the use of common drugs in the treatment of such diseases prompt us to further survey the molecular biology of Leishmania parasites and cancer cells. The information regarding common expressed proteins, as possible therapeutic targets, in Leishmania parasites and cancer cells is scarce. Therefore, the current study reviews proteins, and investigates the regulation and functions of several key proteins in Leishmania parasites and cancer cells. The up- and down-regulations of such proteins were mostly related to survival, development, pathogenicity, metabolic pathways and vital signalling in Leishmania parasites and cancer cells. The presence of common expressed proteins in Leishmania parasites and cancer cells reveals valuable information regarding the possible shared mechanisms of pathogenicity and opportunities for therapeutic targeting in leishmaniasis and cancers in the future.
Collapse
|
6
|
Machado AS, Ramos FF, Santos TTO, Costa LE, Ludolf F, Lage DP, Bandeira RS, Tavares GSV, Oliveira-da-Silva JA, Steiner BT, Chaves AT, Oliveira JS, Chávez-Fumagalli MA, de Magalhães-Soares DF, Silveira JAG, Duarte MC, Machado-de-Ávila RA, Lyon S, Gonçalves DU, Caligiorne RB, Coelho EAF. A new Leishmania hypothetical protein can be used for accurate serodiagnosis of canine and human visceral leishmaniasis and as a potential prognostic marker for human disease. Exp Parasitol 2020; 216:107941. [PMID: 32622940 DOI: 10.1016/j.exppara.2020.107941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 11/26/2022]
Abstract
Distinct antigens have been evaluated with diagnostic purpose for canine and human visceral leishmaniasis (VL), and variable sensitivity and specificity values have been obtained in the assays. In the present study, a Leishmania infantum hypothetical protein called LiHyG, which was identified in an immunoproteomics study in Leishmania infantum amastigote extracts by antibodies in VL dogs sera; was cloned, expressed, purified and evaluated as a recombinant protein (rLiHyG) for the diagnosis of canine and human disease. The recombinant amastigote-specific A2 protein (rA2) and a soluble L. infantum protein extract (SLA) were used as controls. For canine VL, the sensitivity values were of 100%, 57.29% and 48.57%, when rLiHyG, rA2 and SLA were used, respectively, while the specificity values were of 100%, 81.43% and 88.57%, respectively. In addition, AUC values were of 1.00, 0.72 and 0.65, when rLiHyG, rA2 and SLA were used, respectively, while accuracy was of 100%, 72.38% and 75.24%, respectively. For human VL, the sensitivity values were of 100%, 84.00% and 88.00%, when rLiHyG, rA2 and SLA were used, respectively, while the specificity values were of 100%, 58.75% and 73.75%, respectively. In addition, AUC values were of 1.00, 0.76 and 0.83, when rLiHyG, rA2 and SLA were used, respectively, while accuracy was of 100%, 64.8% and 66.6%, respectively. The prognostic role of rLiHyG in the human VL was also evaluated, by means of post-therapeutic serological follow-up with sera samples collected before and six months after treatment. Results showed that treated patients presented significant reductions in the anti-rLiHyG IgG, IgG1, and IgG2 antibody levels, with results being similar to those found in healthy subjects. Testing the rA2 protein and SLA as antigens, lower IgG, IgG1, and IgG2 levels were also found, although they were higher after treatment than those obtained for rLiHyG. In conclusion, results suggested that rLiHyG could be considered for future studies as a diagnostic and/or prognostic marker for canine and human VL.
Collapse
Affiliation(s)
- Amanda S Machado
- Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Rua Domingos Vieira, 590, Santa Efigênia, 30150-240, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Thaís T O Santos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Lourena E Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Bethina T Steiner
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, 88806-000, Santa Catarina, Brazil
| | - Ana T Chaves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Jamil S Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Danielle F de Magalhães-Soares
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Julia A G Silveira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Ricardo A Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, 88806-000, Santa Catarina, Brazil
| | - Sandra Lyon
- Fundação Hospitalar do Estado de Minas Gerais, Hospital Eduardo de Menezes, Belo Horizonte, 30622-020, Minas Gerais, Brazil
| | - Denise U Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Rachel B Caligiorne
- Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Rua Domingos Vieira, 590, Santa Efigênia, 30150-240, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Oliveira-da-Silva JA, Machado AS, Tavares GSV, Ramos FF, Lage DP, Ludolf F, Steiner BT, Reis TAR, Santos TTO, Costa LE, Bandeira RS, Martins VT, Galvani NC, Chaves AT, Oliveira JS, Chávez-Fumagalli MA, Tupinambás U, de Magalhães-Soares DF, Silveira JAG, Lyon S, Machado-de-Ávila RA, Coelho EAF. Biotechnological applications from a Leishmania amastigote-specific hypothetical protein in the canine and human visceral leishmaniasis. Microb Pathog 2020; 147:104283. [PMID: 32485231 DOI: 10.1016/j.micpath.2020.104283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/24/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022]
Abstract
The treatment against visceral leishmaniasis (VL) presents problems, mainly related to the toxicity and/or high cost of the drugs. In this context, a rapid and precise diagnosis of the disease should be performed, mainly to treat patients as soon as possible, aiming to reduce the treatment time and the toxicity of the therapeutics. In the present study, the diagnostic role of an amastigote-specific Leishmania protein was evaluated in the canine and human VL. Results showed that the recombinant protein (called rLiHyJ) and one specific B cell epitope (called PeptJ) predicted from protein sequence presented high sensitivity and specificity values to diagnose canine and human disease, showing also a low reactivity against cross-reactive samples. The rA2 protein and a parasite antigenic extract showed variable sensitivity and/or specificity values in the ELISA experiments. A prognostic evaluation of protein and peptide in the human VL indicated that specific IgG antibodies significantly decreased after treatment, when compared to be values obtained before therapy. The in vitro immunogenicity using rLiHyJ in peripheral blood mononuclear cell (PBMC) cultures collected of such patients and healthy subjects suggested that the protein induced lymphoproliferation and high IFN-γ production in the stimulated cells. In conclusion, although preliminary, results suggest that rLiHyJ and PeptJ could present distinct biotechnological applications in the canine and human VL.
Collapse
Affiliation(s)
- João A Oliveira-da-Silva
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Amanda S Machado
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil; Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Rua Domingos Vieira, 590, Santa Efigênia, 30150-240, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Bethina T Steiner
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, 88806-000, Santa Catarina, Brazil
| | - Thiago A R Reis
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Thaís T O Santos
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Lourena E Costa
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Nathália C Galvani
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Ana T Chaves
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Jamil S Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Unaí Tupinambás
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Danielle F de Magalhães-Soares
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Julia A G Silveira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Sandra Lyon
- Fundação Hospitalar Do Estado de Minas Gerais, Hospital Eduardo de Menezes, Belo Horizonte, 30622-020, Minas Gerais, Brazil
| | - Ricardo A Machado-de-Ávila
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, 88806-000, Santa Catarina, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação Em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Kumar A, Pandey SC, Samant M. A spotlight on the diagnostic methods of a fatal disease Visceral Leishmaniasis. Parasite Immunol 2020; 42:e12727. [PMID: 32378226 DOI: 10.1111/pim.12727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/26/2023]
Abstract
Leishmania donovani (a causative agent of visceral leishmaniasis) poses a serious health threat to the human population which is fatal if left untreated. The life cycle of Leishmania alternates between vertebrate host and Phlebotomine fly as intermediate ones. Due to the difficulties linked to vector (sandfly) control and the lack of an effective vaccine, the control of leishmaniasis relies mostly on chemotherapy. Unfortunately, the prevalence of parasites becoming resistant to the first-line drug pentavalent antimonial (SbV )/sodium antimony gluconate (SAG) and some other anti-leishmanial drug is increasing in several parts of the world. With the alarming rise of drug resistance and other issues related to VL, there is an urgent need to focus on early detection and quick diagnosis of VL case. Therefore, we have reviewed most of the methods used in the diagnostic process of VL. Along with existing diagnostic methods, developing more effective and sensitive diagnostic methods and biomarkers is also vital for enhancing VL identification and control programs. This review gathers the comprehensive information on diagnostics methods of VL under a single umbrella that could be the prominent tools for the development of rapid, accurate and cost-effective diagnostic kits for VL which can be used in field conditions.
Collapse
Affiliation(s)
- Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, Almora, India.,Department of Biotechnology, Kumaun University, Nainital, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, Almora, India
| |
Collapse
|