1
|
Garuglieri E, Marasco R, Odobel C, Chandra V, Teillet T, Areias C, Sánchez-Román M, Vahrenkamp V, Daffonchio D. Searching for microbial contribution to micritization of shallow marine sediments. Environ Microbiol 2024; 26:e16573. [PMID: 38217094 DOI: 10.1111/1462-2920.16573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
Micritization is an early diagenetic process that gradually alters primary carbonate sediment grains through cycles of dissolution and reprecipitation of microcrystalline calcite (micrite). Typically observed in modern shallow marine environments, micritic textures have been recognized as a vital component of storage and flow in hydrocarbon reservoirs, attracting scientific and economic interests. Due to their endolithic activity and the ability to promote nucleation and reprecipitation of carbonate crystals, microorganisms have progressively been shown to be key players in micritization, placing this process at the boundary between the geological and biological realms. However, published research is mainly based on geological and geochemical perspectives, overlooking the biological and ecological complexity of microbial communities of micritized sediments. In this paper, we summarize the state-of-the-art and research gaps in micritization from a microbial ecology perspective. Since a growing body of literature successfully applies in vitro and in situ 'fishing' strategies to unveil elusive microorganisms and expand our knowledge of microbial diversity, we encourage their application to the study of micritization. By employing these strategies in micritization research, we advocate promoting an interdisciplinary approach/perspective to identify and understand the overlooked/neglected microbial players and key pathways governing this phenomenon and their ecology/dynamics, reshaping our comprehension of this process.
Collapse
Affiliation(s)
- Elisa Garuglieri
- Red Sea Research Center, Division of Biological Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ramona Marasco
- Red Sea Research Center, Division of Biological Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Charlene Odobel
- Red Sea Research Center, Division of Biological Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Viswasanthi Chandra
- Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas Teillet
- Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Camila Areias
- Department of Earth Sciences, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Mónica Sánchez-Román
- Department of Earth Sciences, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Volker Vahrenkamp
- Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Red Sea Research Center, Division of Biological Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Wyness AJ, Roush D, McQuaid CD. Global distribution and diversity of marine euendolithic cyanobacteria. JOURNAL OF PHYCOLOGY 2022; 58:746-759. [PMID: 36199189 PMCID: PMC10092097 DOI: 10.1111/jpy.13288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Euendolithic, or true-boring, cyanobacteria actively erode carbonate-containing substrata in a wide range of environments and pose significant risks to calcareous marine fauna. Their boring activities cause structural damage and increase susceptibility to disease and are projected to only intensify with global climate change. Most research has, however, focused on tropical coral systems, and limited information exists on the global distribution, diversity, and substratum specificity of euendoliths. This metastudy aimed to collate existing 16S rRNA gene surveys along with novel data from the south coast of South Africa to investigate the global distribution and genetic diversity of endoliths to identify a "core endolithic cyanobacterial microbiome" and assess global diversification of euendolithic cyanobacteria. The cyanobacterial families Phormidesmiaceae, Nodosilineaceae, Nostocaceae, and Xenococcaceae were the most prevalent, found in >92% of categories surveyed. All four known euendolith clusters were detected in both intertidal and subtidal habitats, in the North Atlantic, Mediterranean, and South Pacific oceans, across temperate latitudes, and within rock, travertine tiles, coral, shell, and coralline algae substrata. Analysis of the genetic variation within clusters revealed many organisms to be unique to substratum type and location, suggesting high diversity and niche specificity. Euendoliths are known to have important effects on their hosts. This is particularly important when hosts are globally significant ecological engineers or habitat-forming species. The findings of this study indicate high ubiquity and diversity of euendolithic cyanobacteria, suggesting high adaptability, which may lead to increased community and ecosystem-level effects with changing climatic conditions favoring the biochemical mechanisms of cyanobacterial bioerosion.
Collapse
Affiliation(s)
- Adam J. Wyness
- Coastal Research GroupDepartment of Zoology and EntomologyRhodes UniversityMakhanda (Grahamstown)South Africa6139
- School of Biology and Environmental SciencesUniversity of MpumalangaMbombelaSouth Africa1200
| | - Daniel Roush
- Center for Fundamental and Applied MicrobiomicsBiodesign InstituteArizona State UniversityTempeArizona85287USA
| | - Christopher D. McQuaid
- Coastal Research GroupDepartment of Zoology and EntomologyRhodes UniversityMakhanda (Grahamstown)South Africa6139
| |
Collapse
|
3
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Schultz J, Modolon F, Rosado AS, Voolstra CR, Sweet M, Peixoto RS. Methods and Strategies to Uncover Coral-Associated Microbial Dark Matter. mSystems 2022; 7:e0036722. [PMID: 35862824 PMCID: PMC9426423 DOI: 10.1128/msystems.00367-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The vast majority of environmental microbes have not yet been cultured, and most of the knowledge on coral-associated microbes (CAMs) has been generated from amplicon sequencing and metagenomes. However, exploring cultured CAMs is key for a detailed and comprehensive characterization of the roles of these microbes in shaping coral health and, ultimately, for their biotechnological use as, for example, coral probiotics and other natural products. Here, the strategies and technologies that have been used to access cultured CAMs are presented, while advantages and disadvantages associated with each of these strategies are discussed. We highlight the existing gaps and potential improvements in culture-dependent methodologies, indicating several possible alternatives (including culturomics and in situ diffusion devices) that could be applied to retrieve the CAM "dark matter" (i.e., the currently undescribed CAMs). This study provides the most comprehensive synthesis of the methodologies used to recover the cultured coral microbiome to date and draws suggestions for the development of the next generation of CAM culturomics.
Collapse
Affiliation(s)
- Júnia Schultz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Flúvio Modolon
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre S. Rosado
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Raquel S. Peixoto
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Wu G, Huang A, Wen Y, Wang H, Wang J, Luo F, Wu M. Euendolithic Cyanobacteria and Proteobacteria Together Contribute to Trigger Bioerosion in Aquatic Environments. Front Microbiol 2022; 13:938359. [PMID: 35875561 PMCID: PMC9298513 DOI: 10.3389/fmicb.2022.938359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Shellfish, mussels, snails, and other aquatic animals, which assimilate limestone (calcium carbonate, CaCO3) to build shells and skeletons, are effective carbon sinks that help mitigate the greenhouse effect. However, bioerosion, the dissolution of calcium carbonate and the release of carbon dioxide, hinders carbon sequestration process. The bioerosion of aquatic environments remains to be elucidated. In this study, the bioerosion of Bellamya spp. shells from the aquatic environment was taken as the research object. In situ microbial community structure analysis of the bioerosion shell from different geographical locations, laboratory-level infected culture, and validated experiments were conducted by coupling traditional observation and 16S rRNA sequencing analysis method. Results showed that bioeroders can implant into the CaCO3 layer of the snail shell, resulting in the formation of many small holes in the shell, which reduced the shell’s density and made the shell fragile. Results also showed that bioeroders were distributed in two major phyla, namely, Cyanobacteria and Proteobacteria. Cluster analysis showed that Cyanobacteria sp. and two unidentified genera (Burkholderiaceae and Raistonia) were the key bioeroders. Moreover, results suggested that the interaction of Cyanobacteria and other bacteria promoted the biological function of “shell bioerosion.” This study identified the causes of “shell bioerosion” in aquatic environments and provided some theoretical basis for preventing and controlling it in the aquatic industry. Results also provided new insights of cyanobacterial bioerosion of shells and microalgae carbon sequestration.
Collapse
Affiliation(s)
- Guimei Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Aiyou Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Yanhong Wen
- Liuzhou Aquaculture Technology Extending Station, Liuzhou, China
| | - Hongxia Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangxin Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Fuguang Luo
- Liuzhou Aquaculture Technology Extending Station, Liuzhou, China
- *Correspondence: Fuguang Luo,
| | - Mingcan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
- Mingcan Wu,
| |
Collapse
|
6
|
Maire J, Buerger P, Chan WY, Deore P, Dungan AM, Nitschke MR, van Oppen MJH. Effects of Ocean Warming on the Underexplored Members of the Coral Microbiome. Integr Comp Biol 2022; 62:1700-1709. [PMID: 35259253 PMCID: PMC9801979 DOI: 10.1093/icb/icac005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/05/2023] Open
Abstract
The climate crisis is one of the most significant threats to marine ecosystems. It is leading to severe increases in sea surface temperatures and in the frequency and magnitude of marine heatwaves. These changing conditions are directly impacting coral reef ecosystems, which are among the most biodiverse ecosystems on Earth. Coral-associated symbionts are particularly affected because summer heatwaves cause coral bleaching-the loss of endosymbiotic microalgae (Symbiodiniaceae) from coral tissues, leading to coral starvation and death. Coral-associated Symbiodiniaceae and bacteria have been extensively studied in the context of climate change, especially in terms of community diversity and dynamics. However, data on other microorganisms and their response to climate change are scarce. Here, we review current knowledge on how increasing temperatures affect understudied coral-associated microorganisms such as archaea, fungi, viruses, and protists other than Symbiodiniaceae, as well as microbe-microbe interactions. We show that the coral-microbe symbiosis equilibrium is at risk under current and predicted future climate change and argue that coral reef conservation initiatives should include microbe-focused approaches.
Collapse
Affiliation(s)
| | - Patrick Buerger
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia,Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wing Yan Chan
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pranali Deore
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ashley M Dungan
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia,Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
7
|
Monsinjon JR, McQuaid CD, Nicastro KR, Seuront L, Oróstica MH, Zardi GI. Weather and topography regulate the benefit of a conditionally helpful parasite. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - Katy R. Nicastro
- Department of Zoology and Entomology Rhodes University Grahamstown South Africa
- CCMAR, CIMAR Associated Laboratory University of Algarve Faro Portugal
- Laboratoire d'Océanologie et de Géosciences Univ. LilleCNRSUniv. Littoral Côte d'OpaleUMR 8187 LOG Lille France
| | - Laurent Seuront
- Department of Zoology and Entomology Rhodes University Grahamstown South Africa
- CCMAR, CIMAR Associated Laboratory University of Algarve Faro Portugal
- Laboratoire d'Océanologie et de Géosciences Univ. LilleCNRSUniv. Littoral Côte d'OpaleUMR 8187 LOG Lille France
- Department of Marine Resources and Energy Tokyo University of Marine Science and Technology Tokyo Japan
| | | | - Gerardo I. Zardi
- Department of Zoology and Entomology Rhodes University Grahamstown South Africa
| |
Collapse
|
8
|
Kopytina NI, Bocharova EA. Fouling communities of microscopic fungi on various substrates of the Black Sea. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fungi are the most active biodeteriorators of natural and man-made materials. The article presents generalizations of the studies (2001–2019) of communities of microscopic fungi within biofilms on various substrates: shells of live Mytilus (Mytilus galloprovincialis, 670 specimens) and Ostreidae (Crassostrea gigas, 90 specimens), fragments of driftwood (over 7,000), stones (40), concrete of hydrotechnical constructions along the shoreline (80) and wood between concrete blocks in constructions on the shores (80). The studies were carried out in Odessa Oblast, the coastal zone of Sevastopol and open area of the Black Sea. There were identified 123 species of micromycetes, belonging to 65 genera, 33 families, 21 orders, 10 classes, 4 divisions, 2 kingdoms: Fungi and Chromista (fungi-like organisms). The Chromista kingdom was represented by 1 species – Ostracoblabe implexa, on shells of C. gigas. The number of species of micromycetes on various substrates varied 23 (wood between concrete blocks of hydrotechnical constructions) to 74 (shells of M. galloprovincialis at the depths of 3 and 6 m). On all the substrates, the following species were found; Alternaria alternata, Botryotrichum murorum. The communities were found to contain pathogenic fungi Aspergillus fumigatus (shells of mollusks, stones, concrete), A. terreus (concrete), Fusarium oxysporum, Pseudallescheria boydii (shells of mollusks). The best representation was seen for the Pleosporales order – from 12.9% (shells of M. galloprovincialis, 0.3 m depth) to 33.3% (shells of C. gigas) of the species composition. Toxin-producing species of Microascales in mycological communities accounted for 1.6% (driftwood) to 40.0% (concrete), and were also observed on shells of Bivalvia – 11.1–32.3%. Similarity of species composition of mycological communities according to Bray-Curtis coefficient varied 21.1% (driftwood and concrete, 10 shared species) to 72.7% (shells of M. galloprovincialis, the depths of 3 and 7 m and shells of C. gigas, 45 shared species). Using graphs of indices of mean taxonomic distinctness (AvTD, Δ+) and variation (Variation in Taxonomic Distinctness index, VarTD, Λ+), we determined deviations of taxonomic structure of the studied mycological communities from the level of mean expected values, calculated based on the list of species, taking into account their systematic positions. The lowest values of index Δ+ were determined for communities on shells of M. galloprovincialis, 0.3 m depth, driftwood, stones and concrete. These communities had uneven distribution of species according to higher taxonomic ranks and minimum number of the highest taxa: 4–6 classes, 1–2 divisions, Fungi kingdom. Disproportion in species composition with decrease in the number of the highest taxa occurred in extreme environmental conditions. Using index Λ+, we found that the most complex taxonomic structure of fungi communities has developed on concrete and shells of C. gigas. In mycological communities on those substrates, the number of species was low (25 and 46), but they belonged to 4–7 classes, 2–3 divisions, 1–2 kingdoms. To compare the structures of mycological communities that have developed in such substrates in biotopes sea, sea-land-air, land-air, we compiled a list of fungi based on the literature data, which, taking into account our data, comprised 445 species of 240 genera, 103 families, 51 orders, 15 classes, 5 divisions, 2 kingdoms. The analysis revealed that on substrates with similar chemical composition, in all the biotopes, the species of the same divisions dominated (genus and family may vary). Therefore, in the biotope land-air – Hypocreales, Pleosporales, Eurotiales (genera Acremonium, Fusarium, Alternaria, Aspergillus, Penicillium); sea – Pleosporales, Eurotiales, Microascales (Alternaria, Aspergillus, Penicillium, Corollospora); sea-land-air – Pleosporales, Microascales (Alternaria, Leptosphaeria, Aspergillus, Penicillium, Corollospora, Halosarpheia). Monitoring of species composition of myxomycetes is needed in farms that cultivate industrial objects, recreation sites, various buildings for prevention of mycotoxin intoxication and infestation by mycodermatoses and other diseases caused by opportunistic and pathogenic fungi.
Collapse
|
9
|
Kopytina NI, Bocharova EA. Fouling communities of microscopic fungi on various substrates of the Black Sea. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/10.15421/012144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fungi are the most active biodeteriorators of natural and man-made materials. The article presents generalizations of the studies (2001–2019) of communities of microscopic fungi within biofilms on various substrates: shells of live Mytilus (Mytilus galloprovincialis, 670 specimens) and Ostreidae (Crassostrea gigas, 90 specimens), fragments of driftwood (over 7,000), stones (40), concrete of hydrotechnical constructions along the shoreline (80) and wood between concrete blocks in constructions on the shores (80). The studies were carried out in Odessa Oblast, the coastal zone of Sevastopol and open area of the Black Sea. There were identified 123 species of micromycetes, belonging to 65 genera, 33 families, 21 orders, 10 classes, 4 divisions, 2 kingdoms: Fungi and Chromista (fungi-like organisms). The Chromista kingdom was represented by 1 species – Ostracoblabe implexa, on shells of C. gigas. The number of species of micromycetes on various substrates varied 23 (wood between concrete blocks of hydrotechnical constructions) to 74 (shells of M. galloprovincialis at the depths of 3 and 6 m). On all the substrates, the following species were found; Alternaria alternata, Botryotrichum murorum. The communities were found to contain pathogenic fungi Aspergillus fumigatus (shells of mollusks, stones, concrete), A. terreus (concrete), Fusarium oxysporum, Pseudallescheria boydii (shells of mollusks). The best representation was seen for the Pleosporales order – from 12.9% (shells of M. galloprovincialis, 0.3 m depth) to 33.3% (shells of C. gigas) of the species composition. Toxin-producing species of Microascales in mycological communities accounted for 1.6% (driftwood) to 40.0% (concrete), and were also observed on shells of Bivalvia – 11.1–32.3%. Similarity of species composition of mycological communities according to Bray-Curtis coefficient varied 21.1% (driftwood and concrete, 10 shared species) to 72.7% (shells of M. galloprovincialis, the depths of 3 and 7 m and shells of C. gigas, 45 shared species). Using graphs of indices of mean taxonomic distinctness (AvTD, Δ+) and variation (Variation in Taxonomic Distinctness index, VarTD, Λ+), we determined deviations of taxonomic structure of the studied mycological communities from the level of mean expected values, calculated based on the list of species, taking into account their systematic positions. The lowest values of index Δ+ were determined for communities on shells of M. galloprovincialis, 0.3 m depth, driftwood, stones and concrete. These communities had uneven distribution of species according to higher taxonomic ranks and minimum number of the highest taxa: 4–6 classes, 1–2 divisions, Fungi kingdom. Disproportion in species composition with decrease in the number of the highest taxa occurred in extreme environmental conditions. Using index Λ+, we found that the most complex taxonomic structure of fungi communities has developed on concrete and shells of C. gigas. In mycological communities on those substrates, the number of species was low (25 and 46), but they belonged to 4–7 classes, 2–3 divisions, 1–2 kingdoms. To compare the structures of mycological communities that have developed in such substrates in biotopes sea, sea-land-air, land-air, we compiled a list of fungi based on the literature data, which, taking into account our data, comprised 445 species of 240 genera, 103 families, 51 orders, 15 classes, 5 divisions, 2 kingdoms. The analysis revealed that on substrates with similar chemical composition, in all the biotopes, the species of the same divisions dominated (genus and family may vary). Therefore, in the biotope land-air – Hypocreales, Pleosporales, Eurotiales (genera Acremonium, Fusarium, Alternaria, Aspergillus, Penicillium); sea – Pleosporales, Eurotiales, Microascales (Alternaria, Aspergillus, Penicillium, Corollospora); sea-land-air – Pleosporales, Microascales (Alternaria, Leptosphaeria, Aspergillus, Penicillium, Corollospora, Halosarpheia). Monitoring of species composition of myxomycetes is needed in farms that cultivate industrial objects, recreation sites, various buildings for prevention of mycotoxin intoxication and infestation by mycodermatoses and other diseases caused by opportunistic and pathogenic fungi.
Collapse
|
10
|
Abstract
There is a growing interest in the endolithic microbial biofilms inhabiting skeletons of living corals because of their contribution to coral reef bioerosion and the reputed benefits they provide to live coral hosts. Here, we sought to identify possible correlations between coral interspecific patterns in skeletal morphology and variability in the biomass of, and chlorophyll concentrations within, the endolithic biofilm. We measured five morphological characteristics of five coral species and the biomasses/chlorophyll concentrations of their endolithic microbiome, and we compare interspecific patterns in these variables. We propose that the specific density of a coral’s skeleton and its capacity for capturing and scattering incident light are the main correlates of endolithic microbial biomass. Our data suggest that the correlation between light capture and endolithic biomass is likely influenced by how the green microalgae (obligatory microborers) respond to skeletal variability. These results demonstrate that coral species differ significantly in their endolithic microbial biomass and that their skeletal structure could be used to predict these interspecific differences. Further exploring how and why the endolithic microbiome varies between coral species is vital in defining the role of these microbes on coral reefs, both now and in the future. IMPORTANCE Microbial communities living inside the skeletons of living corals play a variety of important roles within the coral meta-organism, both symbiotic and parasitic. Properly contextualizing the contribution of these enigmatic microbes to the life history of coral reefs requires knowledge of how these endolithic biofilms vary between coral species. To this effect, we measured differences in the morphology of five coral species and correlate these with variability in the biomass of the skeletal biofilms. We found that the density of the skeleton and its capacity to trap incoming light, as opposed to scattering it back into the surrounding water, both significantly correlated with skeletal microbial biomass. These patterns are likely driven by how dominant green microalgae in the endolithic niche, such as Ostreobium spp., are responding to the skeletal morphology. This study highlights that the structure of a coral’s skeleton could be used to predict the biomass of its resident endolithic biofilm.
Collapse
|
11
|
Ndhlovu A, McQuaid CD, Monaco CJ. Ectoparasites reduce scope for growth in a rocky-shore mussel (Perna perna) by raising maintenance costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142020. [PMID: 32911171 DOI: 10.1016/j.scitotenv.2020.142020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Endolithic cyanobacteria are ubiquitous colonisers of organic and inorganic carbonate substrata that frequently attack the shells of mussels, eroding the shell to extract carbon, often with population infestation rates of >80%. This reduces host physiological condition and ultimately leads to shell collapse and mortality, compromising the services provided by these important ecosystem engineers. While the ecological implications of this and similar interactions have been examined, our understanding of the underlying mechanisms driving the physiological responses of infested hosts remains limited. Using field and laboratory experiments, we assessed the energetic costs of cyanobacterial infestation to the intertidal brown mussel (Perna perna). In the field we found that growth (measured as both increase in shell length and rate of biomineralization) and reproductive potential of clean mussels are greater than those of infested individuals. To explore the mechanisms behind these effects, we compared the energy allocation of parasite-free and infested mussels using the scope for growth (SFG) framework. This revealed a lower SFG in parasitized mussels attributed to an energetic imbalance caused by increased standard metabolic rates, without compensation through increased feeding or reduced excretion of ammonia. Separate laboratory assays showed no differences in calcium uptake rates, indicating that infested mussels do not compensate for shell erosion through increased mineralization. This suggests that the increased maintenance costs detected reflect repair of the organic component of the inner nacreous layer of the shell, an energetically more demanding process than mineralization. Thus, parasite-inflicted damage reduces SFG directly through the need for increased basal metabolic rate to drive shell repair without compensatory increases in energy intake. This study provides a first perspective of the physiological mechanisms underlying this parasite-host interaction, a critical step towards a comprehensive understanding of the ecological processes driving dynamics of this intertidal ecosystem engineer.
Collapse
Affiliation(s)
- Aldwin Ndhlovu
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa.
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Cristián J Monaco
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; IFREMER, IRD, Institut Louis-Malardé, Univ Polynésie française, EIO, Taravao, F-98719 Tahiti, Polynésie française, France
| |
Collapse
|
12
|
Paulino GVB, Félix CR, Landell MF. Diversity of filamentous fungi associated with coral and sponges in coastal reefs of northeast Brazil. J Basic Microbiol 2019; 60:103-111. [PMID: 31696957 DOI: 10.1002/jobm.201900394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 11/08/2022]
Abstract
Fungi are known to form associations with various marine organisms and substrata such as sponges and corals, both as potential symbionts or pathogens. These microorganisms occupy an ecological niche that has recently attracted great attention due to their potential in either ecological or pharmaceutical advances. However, the interaction between marine invertebrates and fungi is still poorly understood, including how they are affected by anthropogenic actions. Here, we identified 89 fungal isolates through sequencing of the ITS rDNA region obtained from the various sponge and coral species collected at two northeast Brazilian reefs. We found 43 species of fungi from 16 genera, all belonging to phylum Ascomycota. The sponges and coral shared four genera: Aspergillus, Penicillium, Trichoderma, and Cladosporium, all commonly found in terrestrial habitats and associated with marine invertebrates. We observed some unusual species in relation to the marine environment, such as Clonostachys rosea and Neopestalotiopsis clavispora, most of them related to plants, either as saprophytic or pathogenic, suggesting that these species were transported from the surrounding terrestrial environment to the reefs. In addition, some isolates represent possible undescribed species, reinforcing the importance of studying the marine environment in relation to its ecological and biotechnological importance.
Collapse
Affiliation(s)
- Gustavo V B Paulino
- Instituto de Ciências Biológicas e da Saúde - ICBS, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil.,Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Ciro R Félix
- Instituto de Ciências Biológicas e da Saúde - ICBS, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil.,Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Melissa F Landell
- Instituto de Ciências Biológicas e da Saúde - ICBS, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
13
|
Vargas-Gastélum L, Chong-Robles J, Lago-Lestón A, Darcy JL, Amend AS, Riquelme M. Targeted ITS1 sequencing unravels the mycodiversity of deep-sea sediments from the Gulf of Mexico. Environ Microbiol 2019; 21:4046-4061. [PMID: 31336033 DOI: 10.1111/1462-2920.14754] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/26/2022]
Abstract
Fungi from marine environments have been significantly less studied than terrestrial fungi. This study describes distribution patterns and associated habitat characteristics of the mycobiota of deep-sea sediments collected from the Mexican exclusive economic zone (EEZ) of the Gulf of Mexico (GoM), ranging between 1000 and > 3500 m depth. Internal Transcribed Spacer 1 (ITS1) amplicons were sequenced by Illumina MiSeq. From 29 stations sampled across three annual campaigns, a total of 4421 operational taxonomic units (OTUs) were obtained, indicating a high fungal richness. Most OTUs assignments corresponded to Ascomycota, unidentified fungi and Basidiomycota. The majority of the stations shared a mere 31 OTUs, including the worldwide reported genera Penicillium, Rhodotorula and Cladosporium. Both a transient and a conserved community were identified, suggesting their dependence on or adaptation to the habitat dynamics, respectively. The differences found in fungal richness and taxonomic compositions were correlated principally with latitude, carbon and carbonates content, and terrigenous content, which could be the potential drivers that delimit fungal distribution. This study represents an expansion of our current knowledge on the biogeography of the fungal community from deep-sea sediments, and identifies the geographic and physicochemical properties that delimit fungal composition and distribution in the GoM.
Collapse
Affiliation(s)
- Lluvia Vargas-Gastélum
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada, Baja California, 22860, Mexico
| | - Jennyfers Chong-Robles
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada, Baja California, 22860, Mexico
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada, Baja California, 22860, Mexico
| | - John L Darcy
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Anthony S Amend
- Botany Department, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Meritxell Riquelme
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada, Baja California, 22860, Mexico
| |
Collapse
|
14
|
Gandhi AD, Murugan K, Umamahesh K, Babujanarthanam R, Kavitha P, Selvi A. Lichen Parmelia sulcata mediated synthesis of gold nanoparticles: an eco-friendly tool against Anopheles stephensi and Aedes aegypti. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23886-23898. [PMID: 31218582 DOI: 10.1007/s11356-019-05726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/10/2019] [Indexed: 05/06/2023]
Abstract
The gold nanoparticles (AuNPs) were synthesized using the lichen Parmelia sulcata extract (PSE) and characterized. The peaks of ultraviolet spectrophotometer and Fourier transmission infrared confirmed the formation of nanoparticles and the bioactive compounds of the lichen being responsible for reducing and capping of the particles. The face-centered cubic particles were determined by XRD peaks at 111, 200, 220, and 311. The elemental composition and spherical shape of AuNPs were confirmed by energy-dispersive spectroscopy and transmission electron microscopy. The average particle size is 54 nm, and the zeta potential - 18 was ascertained by dynamic light scattering. The potential effect of synthesized nanoparticles and lichen extracts was evaluated for antioxidant bioassays like DPPH and H2O2 and tested for mosquitocidal activity against Anopheles stephensi. Results showed that the lichen extract and AuNPs have the capability to scavenge the free radicals with the IC50 values of DPPH being 1020 and 815 μg/ml and the IC50 values of H2O2 being 694 and 510 μg/ml, respectively. The mosquitocidal experimental results in this study showed the inhibition of A. stephensi and A. aegypti against the larvae (I-IV instar), pupae, adult, and egg hatching. On comparison, A. stephensi showed effective inhibition than A. aegypti even at low concentration. Based on the obtained results, gold nanoparticles synthesized using PSE showed an excellent mosquitocidal effect against Anopheles stephensi.
Collapse
Affiliation(s)
- Arumugam Dhanesh Gandhi
- Nano and Energy Biosciences Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
- Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| | - Katike Umamahesh
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India
| | - Ranganathan Babujanarthanam
- Nano and Energy Biosciences Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
| | - Purushothaman Kavitha
- Department of Biochemistry, K.M.G. College of Arts and Science, Gudiyattam, Vellore, Tamil Nadu, 635803, India
| | - Adikesavan Selvi
- Environmental Molecular and Microbiology Research Laboratory (EMMR), Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, India
| |
Collapse
|
15
|
Gleason FH, Larkum AW, Raven JA, Manohar CS, Lilje O. Ecological implications of recently discovered and poorly studied sources of energy for the growth of true fungi especially in extreme environments. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetrong S, Dayarathne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AHA, Gleason FH, Norphanphoun C. An online resource for marine fungi. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00426-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Gleason FH, Gadd GM, Pitt JI, Larkum AWD. The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs. Mycology 2017; 8:216-227. [PMID: 30123642 PMCID: PMC6059078 DOI: 10.1080/21501203.2017.1371802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/22/2017] [Indexed: 10/29/2022] Open
Abstract
Anamorphic ascomycetes have been implicated as causative agents of diseases in tissues and skeletons of hard corals, in tissues of soft corals (sea fans) and in tissues and shells of molluscs. Opportunist marine fungal pathogens, such as Aspergillus sydowii, are important components of marine mycoplankton and are ubiquitous in the open oceans, intertidal zones and marine sediments. These fungi can cause infection in or at least can be associated with animals which live in these ecosystems. A. sydowii can produce toxins which inhibit photosynthesis in and the growth of coral zooxanthellae. The prevalence of many documented infections has increased in frequency and severity in recent decades with the changing impacts of physical and chemical factors, such as temperature, acidity and eutrophication. Changes in these factors are thought to cause significant loss of biodiversity in marine ecosystems on a global scale in general, and especially in coral reefs and shallow bays.
Collapse
Affiliation(s)
- Frank H. Gleason
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Geoffrey M. Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, UK
| | - John I. Pitt
- Food, Safety and Quality, CSIRO, Ryde, Australia
| | - Anthony W. D. Larkum
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|